【题目】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P′____.
科目:初中数学 来源: 题型:
【题目】若将点A(1,3)向左平移2个单位,再向下平移4个单位得到B,则点B的坐标为( )
A. (-2,-1) B. (-1,0) C. (-1,-1) D. (-2,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 若a>b,b<c,则a>c B. 若a>b,则ac>bc
C. 若a>b,则ac2>bc2 D. 若ac2>bc2,则a>b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则DF的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积为3时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与x轴交于点A(0,4)、E(0,-2)两点,与y轴交于点B(2,0),连结AB。过点A作直线AK⊥AB,动点P从点A出发以每秒个单位长度的速度沿射线AK运动,设运动时间为t秒,过点P作PC⊥x轴,垂足为C,把△ACP沿AP对折,使点C落在点D处。
(1)、求抛物线的解析式;
(2)、当点D在△ABP的内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;
(3)、是否存在这样的时刻,使动点D到点O的距离最小,若存在请求出这个最小距离,若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com