【题目】如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点,点E是直线BC上方抛物线上的一动点.
(1)求抛物线的解析式;
(2)过点E作y轴的平行线交直线BC于点M、交x轴于点F,当S△BEC=时,请求出点E和点M的坐标;
(3)在(2)的条件下,当E点的横坐标为1时,在EM上是否存在点N,使得△CMN和△CBE相似?如果存在,请直接写出点N的坐标;如果不存在,请说明理由.
【答案】(1)y=﹣x2+x+3;(2)点E的坐标是(1,3)或(2,2),M的坐标是(1,2)或(2,1);
(3)存在,N(1, )或N′(1,-10).
【解析】试题分析:(1)由直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点C、B的坐标,代入y=ax2+x+c即可得得解;
(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,设点E的坐标是(x,﹣ x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的长,利用面积即可得解;
(3)存在.分别求出CB,CM的值,进行分类讨论即可得解.
试题解析:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,
∴点B的坐标是(0,3),点C的坐标是(3,0)
∵y=ax2+x+c经过B、C两点,
∴
解得
∴y=﹣x2+x+3.
(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,
∵点E是直线BC上方抛物线上的一动点,
∴设点E的坐标是(x,﹣ x2+x+3),
则点M的坐标是(x,﹣x+3),
∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,
∴S△BEC=S△BEM+S△MEC=
=×(﹣x2+x)×3=﹣x2+x=
∴﹣x2+x=,解之得,x1=1,x2=2
即点E的坐标是(1,3)或(2,2)
此时对应的M的坐标是(1,2)或(2,1).
(3)存在.
易得∠CBE=∠CEF=45 ,CB=,CM=,BE=1,
①当时,△CMN∽△CBE,
即,得MN=,
∴FN=,N(1, )
②当时,△CMN∽△EBC,
即,得MN=12,
∴FN=-10,N′(1,-10),
∴在EM上是否存在条件的点N,是N(1, )或N′(1,-10).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点Cn的坐标为 ___________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.
(1)若∠BOC=62°,求∠DOE的度数;
(2)若∠BOC=a°,求∠DOE的度数;
(3)图中是否有互余的角?若有请写出所有互余的角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(2k+3)x+k2=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)若两不相等的实数根满足--=-9,求实数k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论: ①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;
③图中点B的坐标为(3 ,75);
④快递车从乙地返回时的速度为90千米/时,
以上4个结论正确的是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com