精英家教网 > 初中数学 > 题目详情

【题目】如图,PAPB⊙O的切线,AB为切点,∠OAB=30度.

1)求∠APB的度数;

2)当OA=3时,求AP的长.

【答案】(1)∠APB=60°(2)AP=

【解析】试题分析:(1)、方法1,根据四边形的内角和为360°,根据切线的性质可知:∠OAP=∠OBP=90°,求出∠AOB的度数,可将∠APB的度数求出;方法2,证明△ABP为等边三角形,从而可将∠APB的度数求出;

(2)、方法1,作辅助线,连接OP,在Rt△OAP中,利用三角函数,可将AP的长求出;方法2,作辅助线,过点OOD⊥AB于点D,在Rt△OAD中,将AD的长求出,从而将AB的长求出,也即AP的长.

试题解析:(1)、方法一: △ABO中,OA=OB∠OAB=30°∴∠AOB=180°﹣2×30°=120°

∵PAPB⊙O的切线, ∴OA⊥PAOB⊥PB,即∠OAP=∠OBP=90°在四边形OAPB中,

∠APB=360°﹣120°﹣90°﹣90°=60°

方法二: ∵PAPB⊙O的切线∴PA=PBOA⊥PA

∵∠OAB=30°OA⊥PA∴∠BAP=90°﹣30°=60°∴△ABP是等边三角形, ∴∠APB=60°

(2)、方法一:如图,连接OP∵PAPB⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°

Rt△OAP中,OA=3∠APO=30°∴AP==3

方法二:如图,作OD⊥ABAB于点D△OAB中,OA=OB∴AD=AB

Rt△AOD中,OA=3∠OAD=30° ∴AD=OAcos30°=∴AP=AB=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知OA⊥OB,OC⊥OD.

(1)如图①,∠BOC=50°,∠AOD的度数.

(2)如图②,∠BOC=60°,∠AOD的度数.

(3)根据(1)(2)结果猜想∠AOD∠BOC有怎样的关系?并根据图说明理由.

(4)如图②,∠BOC∶∠AOD=7∶29,∠COB∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°∠B=90°BC=6米.当正方形DEFH运动到什么位置,即当AE=米时,有DC2=AE2+BC2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:

(1)小丽买了自动铅笔、记号笔各几支?

(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?

商品名

单价(元)

数量(个)

金额(元)

签字笔

3

2

6

自动铅笔

1.5

记号笔

4

软皮笔记本

2

9

圆规

3.5

1

合计

8

28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为AB上一点,△ACE≌△BCD,AD2+DB2=DE2 , 试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x2-2=y,先化简x(x-3y)+y(3x-1)-2,再求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:5 – x = 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图所示已知∠AOB90°BOC30°OM平分∠AOCON平分∠BOC求∠MON的度数;

(2)如果(1)中∠AOBα其他条件不变,求∠MON的度数;

(3)如果(1)中∠BOCβ(β为锐角)其他条件不变求∠MON的度数;

(4)(1)(2)(3)的结果中你能看出什么规律?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多项式1+2xy﹣3xy2的次数是(
A.3
B.﹣3
C.5
D.6

查看答案和解析>>

同步练习册答案