精英家教网 > 初中数学 > 题目详情

【题目】如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为(  )

A. 6 B. 5 C. 4 D. 3

【答案】B

【解析】

先根据翻折变换的性质得出EF=BE=1,BC=CF=AD=3,可证得△AED≌△FDC 进而求得CD的长.

:由题意得:E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,可得BE=EF=1,CF=BC=3,∠EFC=∠B=

ABCD为矩形,可得∠AED=∠CDF,

在△AED与△FDC中有: AD=CF,∠A=∠DFC=,∠AED=∠CDF

AED≌△FDC, ED=CD,

设CD的长为x,在Rt△EAD中,

,

即:,解得;x=5,

故答案为:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),如图中的折线表示之间的函数关系,下列说法:①动车的速度是千米/小时;②点B的实际意义是两车出发后小时相遇;③甲、乙两地相距千米;④普通列车从乙地到达甲地时间是小时,其中不正确的有( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,,D是AC边上一点,且,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),,AE与BD相交于点G

(1)求证:BD平分

(2)设,求之间的函数关系式;

(3)联结FG,当是等腰三角形时,求BE的长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:

①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,

正确的结论是_____(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:

(1)本次活动抽查了   名学生;

(2)请补全条形统计图;

(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是   度;

(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,分别为的高与中线.

1)如图1,求证:

2)如图2,点的延长线上,连接,若,求证:

3)在(2)的条件下,如图3,过点的平行线交于点,若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ACB=90°经过点B的直线l(l不与直线AB重合)与直线BC的夹角等于ABC,分别过点C、A做直线l的垂线,垂足分别为点D、E.

(1)问题发现

ABC=30°,如图,则=

ABC=45°,如图,则=

(2)拓展探究

当0°ABC90°,的值有无变化?请仅就图的情形给出证明.

(3)问题解决

若直线CE、AB交于点F,=,CD=4,请直接写出线段BD的长.

查看答案和解析>>

同步练习册答案