【题目】将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.
(1)求证:△ADC∽△APD;
(2)求△APD的面积;
(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
【答案】(1)见解析;(2) ;(3) 不会随着α的变化而变化
【解析】
(1)先判断出△BCD是等边三角形,进而求出∠ADP=∠ACD,即可得出结论;
(2)求出PH,最后用三角形的面积公式即可得出结论;
(3)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.
(1)证明:∵△ABC是直角三角形,点D是AB的中点,
∴AD=BD=CD,
∵在△BCD中,BC=BD且∠B=60°,
∴△BCD是等边三角形,
∴∠BCD=∠BDC=60°,
∴∠ACD=90°-∠BCD=30°,
∠ADE=180°-∠BDC-∠EDF=30°,
在△ADC与△APD中,∠A=∠A,∠ACD=∠ADP,
∴△ADC∽△APD.
(2)由(1)已得△BCD是等边三角形,∴BD=BC=AD=2,
过点P作PH⊥AD于点H,
∵∠ADP=30°=90°-∠B=∠A,
∴AH=DH=1, tanA=,
∴PH=.
∴△APD的面积=AD·PH=
(3)的值不会随着α的变化而变化.
∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,
在△MPD与△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,
∴△MPD∽△NCD,∴,
由(1)知AD=CD,∴,
由(2)可知PD=2AH,∴PD=,
∴.
∴的值不会随着α的变化而变化.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=(x﹣3)2与x轴交于A、B两点(点A在B的左侧),与y轴交于C点,顶点D.
(1)求点A、B、D三点的坐标;
(2)连结CD交x轴于G,过原点O作OE⊥CD,垂足为H,交抛物线对称轴于E,求出E点的纵坐标;
(3)以②中点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,平行四边形ABCD中,AE:EB=1:2.
(1)求AE:DC的值.
(2)△AEF与△CDF相似吗?若相似,请说明理由,并求出相似比.
(3)如果S△AEF=6cm2,求S△CDF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com