20£®Èçͼ£¬Ò»´Îº¯Êýy=kx+b£¨k£¼0£©Óë·´±ÈÀýº¯Êýy=$\frac{m}{x}$µÄͼÏóÏཻÓÚA¡¢BÁ½µã£¬Ò»´Îº¯ÊýµÄͼÏóÓëyÖáÏཻÓÚµãC£¬ÒÑÖªµãA£¨4£¬1£©
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽy=$\frac{4}{x}$£»
£¨2£©Á¬½ÓOB£¨OÊÇ×ø±êÔ­µã£©£¬Èô¡÷BOCµÄÃæ»ýΪ3£¬Ôò¸ÃÒ»´Îº¯ÊýµÄ½âÎöʽy=-$\frac{1}{2}$x+3»òy=-$\frac{1}{8}$x+$\frac{3}{2}$
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹µÃ¡÷ABDÊÇÖ±½ÇÈý½ÇÐΣ¿

·ÖÎö £¨1£©°ÑAµÄ×ø±ê´úÈë·´±ÈÀýº¯Êý¼´¿ÉÇó³ömµÄÖµ£®
£¨2£©ÉèµãBµÄ×ø±êΪ£¨n£¬$\frac{4}{n}$£©£¬½«Ò»´Îº¯Êý½âÎöʽ´úÈë·´±ÈÀýº¯Êý½âÎöʽÖУ¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉÕÒ³ön¡¢kµÄ¹ØÏµ£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿É±íʾ³öÀ´b¡¢nµÄ¹ØÏµ£¬ÔÙÓɵãAÔÚÒ»´Îº¯ÊýͼÏóÉÏ£¬¿ÉÕÒ³ök¡¢bµÄ¹ØÏµ£¬ÁªÁ¢3¸öµÈʽΪ·½³Ì×飬½â·½³Ì×é¼´¿ÉµÃ³ö½áÂÛ£®
£¨3£©ÓÉÓÚ¡÷ABD²»ÖªµÀÄÄÌõ±ßÊÇÖ±½Ç±ß£¬ËùÒÔ·ÖÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£¬·Ö±ðÊÇ¡ÏBDA=90¡ã£¬¡ÏDBA=90¡ã£¬¡ÏDAB=90¡ã£¬¸ù¾Ý¹´¹É¶¨ÀíÁгö·½³ÌÇó½â¿ÉµÃ£®

½â´ð ½â£º£¨1£©°ÑµãA£¨4£¬1£©´úÈë·´±ÈÀýº¯ÊýÖеãºm=4£¬
¡à·´±ÈÀýº¯ÊýΪ£ºy=$\frac{4}{x}$£®

£¨2£©¡ßµãBÔÚ·´±ÈÀýº¯Êýy=$\frac{4}{x}$µÄͼÏóÉÏ£¬
¡àÉèµãBµÄ×ø±êΪ£¨n£¬$\frac{4}{n}$£©£®
½«y=kx+b´úÈëy=$\frac{4}{x}$ÖУ¬µÃ£º
kx+b=$\frac{4}{x}$£¬ÕûÀíµÃ£ºkx2+bx-4=0£¬
¡à4n=-$\frac{4}{k}$£¬¼´nk=-1¢Ù£®
Áîy=kx+bÖÐx=0£¬Ôòy=b£¬
¼´µãCµÄ×ø±êΪ£¨0£¬b£©£¬
¡àS¡÷BOC=$\frac{1}{2}$bn=3£¬
¡àbn=6¢Ú£®
¡ßµãA£¨4£¬1£©ÔÚÒ»´Îº¯Êýy=kx+bµÄͼÏóÉÏ£¬
¡à1=4k+b¢Û£®
ÁªÁ¢¢Ù¢Ú¢Û³É·½³Ì×飬¼´$\left\{\begin{array}{l}{nk=-1}\\{bn=6}\\{1=4k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=3}\\{n=2}\end{array}\right.$£¬
¡à¸ÃÒ»´Îº¯ÊýµÄ½âÎöʽΪy=-$\frac{1}{2}$x+3

£¨3£©ÓÉ$\left\{\begin{array}{l}{y=-\frac{1}{2}x+3}\\{y=\frac{4}{x}}\end{array}\right.$¿ÉµÃ$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¡àµãBµÄ×ø±êΪ£¨2£¬2£©£¬
ÉèD£¨a£¬0£©£¬
ÔòAB2=£¨2-4£©2+£¨2-1£©2=5£¬AD2=£¨a-4£©2+£¨0-1£©2=£¨a-4£©2+1£¬BD2=£¨a-2£©2+£¨0-2£©2=£¨a-2£©2+4£¬
µ±¡ÏABD=90¡ãʱ£¬AB2+BD2=AD2£¬¼´5+£¨a-2£©2+4=£¨a-4£©2+1£¬
½âµÃ£ºa=1£¬¼´µãD£¨1£¬0£©£»
µ±¡ÏADB=90¡ãʱ£¬AD2+BD2=AB2£¬¼´£¨a-4£©2+1+£¨a-2£©2+4=5£¬
·½³ÌÎ޽⣬¼´µãD²»´æÔÚ£»
µ±¡ÏBAD=90¡ãʱ£¬AB2+AD2=BD2£¬¼´5+£¨a-4£©2+1=£¨a-2£©2+4£¬
½âµÃ£ºa=3.5£¬¼´µãD£¨3.5£¬0£©£¬
×ÛÉÏ£¬µãDµÄ×ø±êΪ£¨1£¬0£©»ò£¨3.5£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýÓëÒ»´Îº¯Êý½»µãµÄÎÊÌâ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½ÒÔ¼°¹´¹É¶¨ÀíµÈ֪ʶµã£¬½âÌâµÄ¹Ø¼üÊǸù¾Ý¸÷¹ØÏµÁ¿ÕÒ³ö¹ØÓÚk¡¢b¡¢nµÄÈýÔªÒ»´Î·½³Ì×飮±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬µ«¿¼µ½µÄ֪ʶµã½Ï¶à£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬×ÛºÏÈý½ÇÐεÄÃæ»ý¹«Ê½ÒÔ¼°Ò»´Îº¯ÊýÉϵãµÄ×ø±êÌØÕ÷µÃ³ö·½³Ì×éÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®-£¨-3£©µÄÏà·´ÊýÊÇ£¨¡¡¡¡£©
A£®$-\frac{1}{3}$B£®$\frac{1}{3}$C£®-3D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®µ±x¡Ù-3ʱ£¬·Öʽ$\frac{2-x}{x+3}$ÓÐÒâÒ壮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚÏÂÁÐʽ×ÓÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{5^2}=5$B£®-$\sqrt{3.6}$=-0.6C£®$\sqrt{{{£¨-13£©}^2}}=-13$D£®$\sqrt{36}=¡À6$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÀûÓÃÒ»ÃæÇ½£¨Ç½µÄ³¤¶ÈΪ20m£©£¬ÓÃ34m³¤µÄÀé°ÊΧ³ÉÁ½¸ö¼¦³¡£¬ÖмäÓÃÒ»µÀÀé°Ê¸ô¿ª£¬Ã¿¸ö¼¦³¡¾ùÁôÒ»µÀ1m¿íµÄÃÅ£¬ÉèABµÄ³¤ÎªxÃ×£®
£¨1£©ÈôÁ½¸ö¼¦³¡µÄÃæ»ýºÍΪS£¬ÇóS¹ØÓÚxµÄ¹ØÏµÊ½£»
£¨2£©Á½¸ö¼¦³¡Ãæ»ýºÍSÓÐ×î´óÖµÂð£¿ÈôÓУ¬×î´óÖµÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬ÔÚ5¡Á5µÄ·½¸ñÖ½ÖУ¬½«Èçͼ¢ÙµÄÈý½ÇÐÎ¼×Æ½ÒƵ½Èçͼ¢ÚËùʾµÄλÖã¬ÓëÈý½ÇÐÎÒÒÆ´³ÉÒ»¸ö³¤·½ÐΣ®ÕýÈ·µÄÆ½ÒÆ·½·¨£¬¿ÉÒÔÏȽ«¼×ÏòÏÂÆ½ÒÆ3¸ñ£¬ÔÙÏòÓÒÆ½ÒÆ2¸ñµÃµ½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èô£¨m-1£©x|m|-2m=0ÊǹØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£¬ÔòmµÄÖµÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚµÈʽ5¡Á¡õ-3¡Á¡õ=16µÄÁ½¸ö·½¸ñÄÚ·Ö±ðÌîÈëÒ»¸öÊý£¬Ê¹ÕâÁ½¸öÊý»¥ÎªÏà·´ÊýÇÒʹµÈʽ³ÉÁ¢£¬ÔòµÚÒ»¸ö·½¸ñÄÚµÄÊýÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¹ØÓÚxµÄ·½³Ìx-1=2aµÄ½âÊǸºÊý£¬ÔòaµÄȡֵ·¶Î§ÊÇa£¼-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸