精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE , 其中正确结论有(
A.2个
B.3个
C.4个
D.5个

【答案】C
【解析】解:∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.

∵△AEF等边三角形,

∴AE=EF=AF,∠EAF=60°.

∴∠BAE+∠DAF=30°.

在Rt△ABE和Rt△ADF中,

Rt△ABE≌Rt△ADF(HL),

∴BE=DF(故①正确).

∠BAE=∠DAF,

∴∠DAF+∠DAF=30°,

即∠DAF=15°(故②正确),

∵BC=CD,

∴BC﹣BE=CD﹣DF,即CE=CF,

∵AE=AF,

∴AC垂直平分EF.(故③正确).

设EC=x,由勾股定理,得

EF= x,CG= x,

AG=AEsin60°=EFsin60°=2×CGsin60°= x,

∴AC=

∴AB=

∴BE= ﹣x=

∴BE+DF= x﹣x≠ x,(故④错误),

∵S△CEF= x2

S△ABE= x2

∴2S△ABE= x2=S△CEF,(故⑤正确).

综上所述,正确的有4个,

故选:C.

通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在“母亲节”期间,某校部分团员准备购进一批“康乃馨”进行销售,并将所得利润捐给贫困同学的母亲.根据市场调查,这种“康乃馨”的销售量y(枝)与销售单价x(元/枝)之间成一次函数关系,它的部分图象如图.
(1)试求y与x之间的函数关系式;
(2)若“康乃馨”的进价为5元/枝,且要求每枝的销售盈利不少于1元,问:在此次活动中,他们最多可购进多少数量的康乃馨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)如图所示,O是直线AB上一点,∠AOC=∠BOCOC∠AOD的平分线.

1)求∠COD的度数.

2)判断ODAB的位置关系,并说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.
(1)求△ABC的面积;
(2)求四边形ADOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明是个爱动脑筋的学生,在学习了解直角三角形以后,一天他去测量学校的旗杆DF的高度,此时过旗杆的顶点F的阳光刚好过身高DE1.6米的小明的头顶且在他身后形成的影长DC=2米.

1)若旗杆的高度FGa米,用含a的代数式表示DG

2)小明从点C后退6米在A的测得旗杆顶点F的仰角为30°,求旗杆FG的高度.(点ACDG在一条直线上,,结果精确到0.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是(  )

A. 8 B. 12 C. 16 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bx-3(a≠0)的图象经过点(13),则代数式1-a-b的值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,99999×11=1099989,99999×12=1199988,99999×13=1299987,99999×14=1399986,那么,99999×20=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两组勾股数__________

查看答案和解析>>

同步练习册答案