精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点.

(1)求m的值;
(2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE 相似?若存在,请求出点F的坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在请说明理由.
(1)-1;(2)(1,4)或(,5);(3)()或().

试题分析:(1)由抛物线与y轴交于点C(0,4),把C点的坐标代入解析式建立方程,求出方程的解,就可以求出m的值;
(2)先求出抛物线与x轴的交点坐标,根据抛物线的对称性求出E点的坐标,然后根据对应角不同的情况就可以求出F的不同坐标;
(3)先由待定系数法求出直线BC的解析式,然后由题目的条件求出与直线BC平行且距离为 的直线的解析式,再由抛物线的对称轴与这些与BC平行的直线的解析式构建方程组求出其解,就可以求出G的坐标.
试题解析:(1)抛物线与y轴交于点C(0,4),
∴5+m=4.∴m=-1.
(2)抛物线的解析式为 y=-x2+3x+4.
可求抛物线与x轴的交点A(-1,0),B(4,0).
可求点E的坐标(,0).
由图知,点F在x轴下方的直线AD上时,△ABF是钝角三角形,不可能与△ADE相似,所以点F一定在x轴上方.
此时△ABF与△ADE有一个公共角,两个三角形相似存在两种情况:
时,由于E为AB的中点,此时D为AF的中点,可求 F点坐标为(1,4).
②当时,,解得: .
如图(2)过F点作FH⊥x轴,垂足为H.

∵D是OC的中点,∴OD=2.
∴由勾股定理得:.
, 解得.
由勾股定理得:
∴F的坐标为(,5).
(3)在抛物线的对称轴上存在符合题意的点G.
由题意,可知△OBC为等腰直角三角形,直线BC为y=-x+4.
如图(3),
∵MQ∥BC,QP=,∴由勾股定理,得CQ=5.
∴可求与直线BC平行且距离为的直线为y=-x+9或y=-x-1.
∴点G在直线y=-x+9或y=-x-1上.
∵抛物线的对称轴是直线x=
,解得:.
∴点G的坐标为()或().
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知抛物线y=ax2-4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为_________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知集合A中的数与集合B中对应的数之间的关系是某个二次函数.若用x表示集合A中的数,用y表示集合B中的数,由于粗心,小聪算错了集合B中的一个y值,请你指出这个算错的y值为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为xm,窗户的透光面积为ym2(铝合金条的宽度不计).

(1)求出y与x的函数关系式;
(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). 求二次函数的解析式;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.

(1)求m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数为常数,且.
(1)求证:不论为何值,该函数的图象与轴总有两个公共点;
(2)设该函数的图象的顶点为C,与轴交于A,B两点,当△ABC的面积等于2时,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

汽车匀加速行驶路程为,匀减速行驶路程为,其中为常数. 一汽车经过启动、匀加速行驶、匀速行驶、匀减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是(   )

查看答案和解析>>

同步练习册答案