精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.

(1)求一次函数的解析式;

(2)求AOB的面积;

(3)观察图象,直接写出y1y2时x的取值范围.

【答案】(1)y1=﹣x+2,(2)6;(3)x﹣2或0x4

【解析】

试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;

(2)将两条坐标轴作为AOB的分割线,求得AOB的面积;

(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.

试题解析:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)

一次函数y1=kx+b(k0)的图象与反比例函数y2=﹣的图象交于A、B两点

将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4

将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得

,解得

一次函数的解析式为y1=﹣x+2;,

(2)在一次函数y1=﹣x+2中,

当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)

=×2×2+×2×2+×2×2=2+2+2=6;

(3)根据图象可得,当y1y2时,x的取值范围为:x﹣2或0x4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,GBC上任意一点(点GBC不重合),AEDGECFAEDGF.

(1) 在图中找出一对全等三角形,并加以证明;

(2)求证:AE=FC+EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解分式方程:

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于三个数a,b,c,M{a,b,c}表示这三个数的平均数min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴的单位长度为1.

(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?

(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?

(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M所表示的数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A坐标为(6,0),点B在y轴的正半轴上,且=240.

(1)求点B坐标;

(2)若点P从B出发沿y轴负半轴方向运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;

(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题

(1)在图中建立正确的平面直角坐标系;

(2)根据所建立的坐标系,写出BC的坐标;

(3)计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个边长为6的等边三角形电子跳蚤游戏盘.如果跳蚤开始时在AB边的P0处,且BP0=1,跳蚤第一步从P0跳到BC边的P1(第1次落点)处,且BP1=BP0;第二步从P1跳到AC边的P2(第2次落点)处,且CP2=CP1;第三步从P2 跳到AB边的P3(第3次落点)处,且AP3=AP2;…;跳蚤按上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2017P2018之间的距离为(  )

A. 1 B. 2 C. 3 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1MAN=90°,射线AE在这个角的内部,点BC分别在∠MAN的边AMAN上,且AB=ACCFAE于点FBDAE于点D.求证:ABD≌△CAF

2)如图2,点BC分别在∠MAN的边AMAN上,点EF都在∠MAN内部的射线AD上,∠12分别是ABECAF的外角.已知AB=AC,且∠1=2=BAC.求证:ABE≌△CAF

3)如图3,在ABC中,AB=ACABBC.点D在边BC上,CD=2BD,点EF在线段AD上,∠1=2=BAC.若ABC的面积为15,求ACFBDE的面积之和.

查看答案和解析>>

同步练习册答案