精英家教网 > 初中数学 > 题目详情

【题目】如图,把六张大小完全相同的小长方形卡片(如图①)不重叠无缝隙的放在一个底面为长方形(长为,宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和是(

A.B.C.D.

【答案】B

【解析】

设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得出a+3b=m,代入计算即可.

解:设图①小长方形的长为a,宽为b

上面的长方形的周长:2(m-3b+n-3b)

下面的长方形的周长:2(n-a+m-a)

周长之和为:2m+2n-12b+2n+2m-4a=4m+4n-12b-4a

由图②得出:a+3b=m

代入可得出:4m+4n-12b-4a=4n

故答案为:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3

4

1200

第二周

5

6

1900

(进价、售价均保持不变,利润=销售收入﹣进货成本)

(1)求A、B两种型号的电风扇的销售单价;

(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?

(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△BAC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=30°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°,点OAC上,以OA为半径的OAB于点DBD的垂直平分线交BC于点E,交BD于点F,连接DE

1)判断直线DEO的位置关系,并说明理由;

2)若AC=6BC=8OA=2,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCDE为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接ECAG

1)当点E在正方形ABCD内部时,

①根据题意,在图1中补全图形;

②判断AGCE的数量关系与位置关系并写出证明思路.

2)当点BDG在一条直线时,若AD4DG,求CE的长.(可在备用图中画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的三边ABBCCA分别为边,在BC的同侧作等边△ABD、等边△BCE、等边△CAE,求证:四边形ADEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:

你们是用9天完成4800米长的大坝加固任务的

我们加固600米后采用新的加固模式,这样每天加固长度是原来的2

通过这段对话请你求出该地驻军原来每天加固的米数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),△ABC,AB=BC,PAB边上一点,连接CP,PAPC为邻边作APCDACPD相交于点E,已知∠ABC=∠AEP=(0°<<90°).

(1)求证: ∠EAP=∠EPA;

(2)APCD是否为矩形?请说明理由;

(3)如图(2),FBC中点,连接FP,∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(MN分别是∠MEN的两边与BAFP延长线的交点).猜想线段EMEN之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.

(1)①∠ABN的度数是 ;②∵AM //BN,∴∠ACB=∠

(2)求∠CBD的度数;

(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.

(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .

查看答案和解析>>

同步练习册答案