精英家教网 > 初中数学 > 题目详情

【题目】如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )

A.
B.
C.
D.

【答案】D
【解析】(1)当点P沿O→C运动时,

当点P在点O的位置时,y=90°,

当点P在点C的位置时,

∵OA=OC,

∴y=45°,

∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,

根据圆周角定理,可得

y≡90°÷2=45°;(3)当点P沿D→O运动时,

当点P在点D的位置时,y=45°,

当点P在点0的位置时,y=90°,

∴y由45°逐渐增加到90°.

故答案为:D

(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,由OA=OC,得到y=45°,得到y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,得到y的值;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,得到y由45°逐渐增加到90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,∠B=∠C,点DBC上,点EAC上,连接DE∠ADE=∠AED

(1)∠B=70°∠ADE=80°,求∠BAD∠CDE

(2)当点DBC(点B,C除外)边上运动时,且点EAC边上,猜想∠BAD∠CDE的数量关系是,并证明你的猜想.

(3)当点DBC(点B,C除外)边上运动时,且点EAC边上,若∠BAD=25°,求∠CDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20185月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.

1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.

2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为ykx+b,若冲锋舟在距离A 千米处与救生艇第二次相遇,求kb的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.

(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,ACBD相交于0AEBDECFBDF,则图中的全等三角形共(  )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,与AC交于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.

(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的面积法给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用面积法来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.

证明:连结DB,过点DBC边上的高DF,则DF=EC=b﹣a,

∵S四边形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四边形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中, ,点DBC所在的直线上,点E在射线AC上,且,连接DE

(1)如图①,若 ,求的度数;

(2)如图②,若 ,求的度数;

(3)当点D在直线BC上(不与点BC重合)运动时,试探究的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为( )

A.5
B.
C.
D.

查看答案和解析>>

同步练习册答案