【题目】如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )
A.
B.
C.
D.
【答案】D
【解析】(1)当点P沿O→C运动时,
当点P在点O的位置时,y=90°,
当点P在点C的位置时,
∵OA=OC,
∴y=45°,
∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,
根据圆周角定理,可得
y≡90°÷2=45°;(3)当点P沿D→O运动时,
当点P在点D的位置时,y=45°,
当点P在点0的位置时,y=90°,
∴y由45°逐渐增加到90°.
故答案为:D
(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,由OA=OC,得到y=45°,得到y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,得到y的值;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,得到y由45°逐渐增加到90°.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED
(1)若∠B=70°,∠ADE=80°,求∠BAD,∠CDE.
(2)当点D在BC(点B,C除外)边上运动时,且点E在AC边上,猜想∠BAD与∠CDE的数量关系是,并证明你的猜想.
(3)当点D在BC(点B,C除外)边上运动时,且点E在AC边上,若∠BAD=25°,求∠CDE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
(1)冲锋舟从A地到C地的时间为 分钟,冲锋舟在静水中的速度为 千米/分,水流的速度为 千米/分.
(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地 千米处与救生艇第二次相遇,求k、b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共( )
A. 5对B. 6对C. 7对D. 8对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,与AC交于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,
∵S四边形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四边形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中, ,点D在BC所在的直线上,点E在射线AC上,且,连接DE.
(1)如图①,若, ,求的度数;
(2)如图②,若, ,求的度数;
(3)当点D在直线BC上(不与点B、C重合)运动时,试探究与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为( )
A.5
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com