精英家教网 > 初中数学 > 题目详情
如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若方程有一个根是1,求方程的另一个根.
分析:(1)根据关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,得出k≠0,△>0,再计算即可,
(2)根据方程有一个根是1,求出k=1或2,再设方程的另一根为x2,利用根与系数的关系列式计算即可.
解答:解:(1)∵关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,
∴k≠0,△=b2-4ac=[-(2k+1)]2-4k2=4k+1>0,
∴k的取值范围是k>-
1
4
且k≠0,

(2)∵方程有一个根是1,
∴k2-(2k+1)+1=0,
k=1或2,
设方程的另一根为x2
当k=1时,1•x2=1,x2=1,
当k=2时,1•x2=
1
4
,x2=
1
4
点评:本题考查了根的判别式和根与系数的关系,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根,注意方程若为一元二次方程,则k≠0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

1.⑴ 求出一元二次函数的关系式;

2.⑵点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;

3.⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

【小题1】⑴ 求出一元二次函数的关系式;
【小题2】⑵ 为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
【小题3】⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年山东省东营市学业水平模拟考试数学卷 题型:解答题

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

1.⑴ 求出一元二次函数的关系式;

2.⑵点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;

3.⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.

查看答案和解析>>

同步练习册答案