精英家教网 > 初中数学 > 题目详情
12.已知a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.

分析 先将已知化简得:a-2b=1,再把所求的式子进行因式分解,最后代入计算.

解答 解:a(a+1)-(a2+2b)=1,
a2+a-a2-2b-1=0,
a-2b=1,
a2-4ab+4b2-2a+4b,
=(a-2b)2-2(a-2b),
=12-2×1,
=-1.

点评 此题主要考查了因式分解的应用,解题的关键是利用完全平方公式和提公因式法分解因式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.对于二次函数y=-$\frac{1}{2}$(x-4)2+5的图象,有下列说法:①其图象开口向上;②对称轴是直线x=4;③顶点坐标是(-4,5);④与y轴的交点坐标是(0,3),其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:
(1)$\frac{1}{5}$y2+361=0                
(2)(1-$\sqrt{3}$)m2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,平行四边形ABCD中,AC、BD交于点O,E是OB的中点,AE延长线交BC于F,求证:CF=2BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△MNQ中QM=QN,∠Q=36°,作∠QMN的平分线ND交QM于D点,求证:MN=QD=$\frac{\sqrt{5}-1}{2}$QM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,在△ABC中,AB=BC,P为底边BC上一点,PF⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.

(1)求证:PE+PF=CH.
(2)如图2,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请直接写出你的猜想,不用证明.
(3)若∠A=30°,△ABC的面积为81,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,点P到AB边的距离PE=6或12.(直接写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.新定义:[a,b]为一次函数y=ax+b(a,b为实数,且a≠0)的关联数,若关联数[1,m+2]所对应的一次函数是正比例函数,求关于x的方程$\frac{1}{x-2}$-$\frac{3}{m}$=2的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.七年级某数学小组学习了图形的全等之后,进行了如下研究:

(1)已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.
①如图1,当直线m经过∠BAC内部时,在图1中完成,经测量发现,DE=|BD-CE|(=、<、>)
②如图2,当直线m经过△ABC外部时,你认为DE、BD、CE间的关系是DE=BD+CE.
(2)如图3,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并有∠BDA=∠ABC=∠BAC=α,其中α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如果成立,请你给出推理过程;若不成立,请说明理由.
(3)拓展与说明:如图4,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),且DE=α,点F在∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE.若∠BDA=∠AEC=∠BAC,试求△DEF周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知关于x的函数y=ax2+x+4(a为常数)的图象与x轴只有一个交点,则a的值为$\frac{1}{16}$或0.

查看答案和解析>>

同步练习册答案