精英家教网 > 初中数学 > 题目详情
4.新定义:[a,b]为一次函数y=ax+b(a,b为实数,且a≠0)的关联数,若关联数[1,m+2]所对应的一次函数是正比例函数,求关于x的方程$\frac{1}{x-2}$-$\frac{3}{m}$=2的解.

分析 先依据题意得到函数关系式,然后依据正比例函数的定义求得m的值,最后解分式方程即可.

解答 解:∵:[a,b]为一次函数y=ax+b(a,b为实数,且a≠0)的关联数,
∴关联数[1,m+2]所对应的一次函数是y=x+m+2.
又∵该函数为正比例函数,
∴m+2=0,解得m=-2.
∴分式方程可变形为:$\frac{1}{x-2}+\frac{3}{2}=2$,
解得:x=3,
经检验,x=3是分式方程的解.
∴分式方程的解为x=3.

点评 本题主要考查的是正比例函数的定义,解分式方程,求得m的值是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.若|x-2|+|x+2y-6|=0,则x=2,y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.以点O为对称中心,画出与如图所示图形成中心对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在等腰 Rt△ABC中,∠A=90°,AC=AB=2,D是BC边上的点且BD=$\frac{1}{3}$CD,连接AD.AD⊥AE,AE=AD,连接BE.下列结论:
①△ADC≌△AEB;
②BE⊥CB;
③点B到直线AD的距离为$\frac{{\sqrt{10}}}{5}$;
④四边形AEBC的周长是$\frac{{7\sqrt{2}+\sqrt{10}}}{2}+2$;
⑤S四边形ADBE=2.
其中正确的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校在开展“校园献爱心”活动中,共筹款4500元捐赠给西部山区学校男、女两种款式书包共70个,已知男款书包的单价为60元/个,女款书包的单价70元/个.那么捐赠的两种书包各多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)(x2+y)(-y+x2)-(-x)2•(-x2);
(2)(5x-3)(5x+3)-3x(3x-7);
(3)(3+a)(3-a)+a2
(4)(a+2b)(a-2b)-$\frac{1}{2}$b(a-8b).
(5)(2a+1)(2a-1)-4a(a-1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,点C在x轴的正半釉上,且∠ACO=90°,CO=CA,点D在边AC上,在边AC的右侧取一点B,使∠ADB=90°,且BD=DA,反比例函数y=$\frac{k}{x}$在第一象限的图象经过点B,若S△OAC-S△BAD=5k-2,则k的值为$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.我们把a、b两个数的较大数记作Z{a,b},一次函数y=-x+m与函数y=Z{x+2,x2}的图象有且只有2个交点,则m的取值或范围为m≥0或-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案