精英家教网 > 初中数学 > 题目详情
关于x的方程x2-(5k+1)x+k2-2=0,是否存在负数k,使方程的两个实数根的倒数和等于4?若存在,求出满足条件的k的值;若不存在,说明理由.
分析:把倒数和进行通分整理,等量关系为:倒数和等于4.即
1
x1
+
1
x2
=
x1+x2
x1x2
=4.再把两根关系代入即可.
解答:解:根据题意,得
x1+x2=5k+1,x1×x2=k2-2.
1
x1
+
1
x2
=
x1+x2
x1x2
=
5k+1
k2-2
=4.
∴4k2-8=5k+1.
解得k1=
9
4
,k2=-1.
经检验
9
4
和-1都是方程的根.
当k1=
9
4
,k2=-1,代入方程x2-(5k+1)x+k2-2=0的判别式时,△>0,
所以存在负数k=-1,满足条件.
点评:解决本题的关键是把所求的代数式整理成与根与系数有关的形式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2+x-
1
4
k=0
没有实数根,那么k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用配方法解关于x的方程x2+px=q时,应在方程两边同时加上(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x+k=0的一根是2,则k=
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

通过观察,发现方程不难求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)观察上述方程及其解,可猜想关于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)试验证:当x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的结论,解关于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
无解,求a的值?

查看答案和解析>>

同步练习册答案