【题目】已知抛物线,直线的对称轴与交于点,点与的顶点的距离是4.
(1)求的解析式;
(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.
【答案】(1);(2)或者.
【解析】试题分析:(1)利用二次函数的对称轴公式求出m,再利用两点间的距离公式求出n;
(2)根据一次函数的性质求出k大于0,注意分类讨论解决问题,用待定系数法求一次函数的表达式.
试题解析:(1) 的对称轴与 的交点为 ,
的对称轴为 , ,
,
顶点坐标为 ,
,
,
;
(2)①当时, 与 轴交点为 ,
随 的增大而增大,
,
ⅰ.当 经过点 时,则有 , 解得,
∴ (不符,舍去);
ⅱ.当 经过点 时,则有 , ,
;
②当时,令 则,则 ,
与 轴交于点 ,
ⅰ.当 经过点 时,则有 , ,
∴ (不符,舍去);
ⅱ.当 经过点 时, 则有 , ,
,
综上述, 或者.
科目:初中数学 来源: 题型:
【题目】如图,已知∥,,,求的度数.
解:因为∥(已知),
所以(__________________________).
因为(____________________________),
所以(等量代换).
(余下说理过程请写在下方)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.
社团名称 | 人数 |
文学社团 | 18 |
科技社团 | a |
书画社团 | 45 |
体育社团 | 72 |
其他 | b |
请解答下列问题:
(1)a= ,b= ;
(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ;
(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的面积为1.分别倍长(延长一倍),BC,CA得到.再分别倍长A1B1,B1C1,C1A1得到.…… 按此规律,倍长2018次后得到的 的面积为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【新知理解】
如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.
作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.
【解决问题】
如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为 cm;
【拓展研究】
如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BON= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com