【题目】如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)AC的长是 ,AB的长是 .
(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.
(3)当t为何值,△BEF的面积是2?
【答案】(1)10;5;(2)EF与AD平行且相等.(3)3.
【解析】分析:(1)、根据含有30°角的直角三角形的性质以及BC的长度求出AC和AB的长度;(2)、根据运动的速度得出AE=DF,根据垂直得出AE∥DF,从而得出四边形AEFD为平行四边形,从而得出EF和AD的关系;(3)、根据运动的速度用含t的代数式表示BE和BF的长度,然后根据直角三角形的面积计算法则得出t的值.
详解:(1)解:∵在Rt△ABC中,∠C=30°, ∴AC=2AB,
根据勾股定理得:AC2﹣AB2=BC2, ∴3AB2=75, ∴AB=5,AC=10;
(2)EF与AD平行且相等.
证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t, ∴DF=t. 又∵AE=t,
∴AE=DF, ∵AB⊥BC,DF⊥BC, ∴AE∥DF.
∴四边形AEFD为平行四边形. ∴EF与AD平行且相等.
(3)解:∵在Rt△CDF中,∠A=30°, ∴DF=CD, ∴CF=t,
又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5﹣t,
∴, 即:,
解得:t=3,t=7(不合题意舍去), ∴t=3.
故当t=3时,△BEF的面积为2.
科目:初中数学 来源: 题型:
【题目】两瓶酒精,甲瓶有升,浓度未知;乙瓶有升,浓度,从甲瓶中倒入乙瓶升酒精,摇匀后倒回一部分给甲瓶,此时甲瓶浓度为,乙瓶浓度为,此时乙瓶中有酒精( )升.
A. 5 B. 6.3 C. 5.25 D. 5.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】①有理数分为正有理数与负有理数;
②飞机向前运动千米记作千米,则向下运动千米记作千米;
③零既是自然数,又是整数;④既是负数,又是分数.其中正确的有( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度数;
(2)∠DAE的度数;
(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.
如图,抛物线y=x2﹣2x﹣3与x轴交于点A,B,与y轴交于点D,以AB为直径,在x轴上方作半圆交y轴于点C,半圆的圆心记为M,此时这个半圆与这条抛物线x轴下方部分组成的图形就称为“蛋圆”.
(1)直接写出点A,B,C的坐标及“蛋圆”弦CD的长;
A , B , C , CD=;
(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
①求经过点C的“蛋圆”切线的解析式;
②求经过点D的“蛋圆”切线的解析式;
(3)由(2)求得过点D的“蛋圆”切线与x轴交点记为E,点F是“蛋圆”上一动点,试问是否存在S△CDE=S△CDF , 若存在请求出点F的坐标;若不存在,请说明理由;
(4)点P是“蛋圆”外一点,且满足∠BPC=60°,当BP最大时,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面一段:
计算
观察发现,上式从第二项起,每项都是它前面一项的倍,如果将上式各项都乘以,所得新算式中除个别项外,其余与原式中的项相同,于是两式相减将使差易于计算.
解:设,①
则,②
②-①得,则.
上面计算用的方法称为“错位相减法”,如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于),那么这列数的求和问题,均可用上述“错位相减”法来解决.
下面请你观察算式是否具备上述规律?若是,请你尝试用“错位相减”法计算上式的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com