精英家教网 > 初中数学 > 题目详情

【题目】如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC0.7m.

(1)求此时梯子的顶端A距地面的高度AC;

(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?

【答案】(1)此时梯顶A距地面的高度AC是2.4米;(2)梯子的底端B在水平方向滑动了1.3m.

【解析】试题分析:(1)在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度

根据AC=AA′+CA′即可求得CA′的长度,在直角三角形A′B′C中,已知AB=A′B′,CA′即可求得CB′的长度,根据BB′=CB′-CB即可求得BB′的长度.

试题解析:(1)∵∠C=90°,AB=2.5,BC=0.7

∴AC===2.4(米),

答:此时梯顶A距地面的高度AC是2.4米;

(2)∵梯子的顶端A下滑了0.9米至点A′,

∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),

Rt△A′CB′由勾股定理得:A′C2+B′C2=A′B′2

1.52+B′C2=2.52,∴B′C=2(m)

∴BB′=CB′﹣BC=2﹣0.7=1.3(m),

答:梯子的底端B在水平方向滑动了1.3m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是同一时刻学校里一棵树和旗杆的影子,如果树高为3米,测得它的影子长为1.2米,旗杆的高度为5米,则它的影子长为(

A.4米
B.2米
C.1.8米
D.3.6米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,对角线AC,BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:

(1)△ODE≌△FCE;
(2)四边形ODFC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:

苗苗的画法:

①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;

②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b//a.

小华的画法:

①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;

②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b//a.

请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.

答:我喜欢__________同学的画法,画图的依据是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A,B的坐标分别为(2,m),(2,3m﹣1),若线段AB与抛物线y=x2﹣2x+2相交,则m的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图,端点为P的两条射线分别交两直线l1、l2A、C、B、D四点,已知∠PBA=PDC,l=PCD,求证:∠2+3=180°.

证明:∵∠PBA=PDC(   

   (同位角相等,两直线平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代换)

∴PC//BF(内错角相等,两直线平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代换)

查看答案和解析>>

同步练习册答案