精英家教网 > 初中数学 > 题目详情
2.对于平面直角坐标系中的点P(a,b),若点P′的坐标为(a+$\frac{b}{k}$,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为P′(1+$\frac{4}{2}$,2×1+4),即P′(3,6).
(1)点P(-1,-2)的“2属派生点”P′的坐标为(-2,-4);
(2)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,则求k的值;
(3)如图,点A在函数y=-$\frac{4\sqrt{3}}{x}$(x<0)的图象上,且点A是点B的“-$\sqrt{3}$属派生点”,问点B是否在直线y=$\sqrt{3}$x+2$\sqrt{3}$上.

分析 (1)根据“k属派生点”的定义即可直接求解;
(2)设点P坐标为(a,0),从而有P′(a,ka),显然PP′⊥OP,由条件可得OP=PP′,从而求出k;
(3)设B(a,b)根据派生点的定义表示出A的坐标,代入反比例函数y=-$\frac{4\sqrt{3}}{x}$的解析式即可得到a和b的关系,可得b=$\sqrt{3}$a+2 $\sqrt{2}$,由此即可判断B在直线y=$\sqrt{3}$x+2 $\sqrt{2}$上.

解答 解:(1)P(-1,-2)的“2属派生点”是(-1+$\frac{-2}{2}$,-2×1-2)即(-2,-4),
故答案是:(-2,-4);   

(2))∵点P在x轴的正半轴上,
∴b=0,a>0.
∴点P的坐标为(a,0),点P′的坐标为(a,ka).
∴PP′⊥OP.
∵△OPP′为等腰直角三角形,
∴OP=PP′.
∴a=±ka.
∵a>0,
∴k=±1.
综上所述,k=±1;
故答案为:±1.
(3)设B(a,b),
∵B的“-$\sqrt{3}$属派生点”是A,
∴A(a-$\frac{b}{\sqrt{3}}$,-$\sqrt{3}$a+b)
∵点A还在反比例函数y=-$\frac{4\sqrt{3}}{x}$的图象上,
∴(a-$\frac{b}{\sqrt{3}}$)(-$\sqrt{3}$a+b)=-4 $\sqrt{3}$.
∴(b-$\sqrt{3}$a)2=12.
∵b-$\sqrt{3}$a>0,
∴b-$\sqrt{3}$a=2 $\sqrt{3}$.
∴b=$\sqrt{3}$a+2 $\sqrt{3}$.
∴B在直线y=$\sqrt{3}$x+2 $\sqrt{3}$上,

点评 本题考查一次函数的应用、反比例函数的应用、等腰直角三角形的性质等知识,解题的关键是理解题意,学会灵活运用所学知识解决问题,学会利用参数解决问题,属于中考创新题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.整理一批数据,由一人做需80h完成,现在计划先由一些人做2h,再增加5人做8h,共完成这项工作的四分之三,应先安排多少人做2h?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.在等腰Rt△ABC中,AB=AC,则∠B的正弦值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.一次函数y=ax+b的图象如图所示,当xx≥1时,y≥0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.分式$\frac{2x}{x+3}$无意义的条件是x=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:(-3)×(-1)2n-1=3.(n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知一次函数y=(m-2)x+m图象不经过第三象限,那么实数m的取值范围是0≤m<2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某校以“中国结”、“机器人”和“数学创新思维”为特色在中预年级开展兴趣班.已知中预年级共有学生243人,规定每位学生只能参加一个兴趣班.经过同学们的自主报名和学校的合理安排,每位学生都进入了理想的兴趣班.现已知参加这三个班的学生人数之比是4:3:2,求参加“数学创新思维”兴趣班的学生人数有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,BG延长交DC于点F.
(1)如果点G在长方形ABCD的内部,如图1所示.
①求证:GF=DF;
②若DF=$\frac{1}{2}$DC,AD=4,求AB的长度.
(2)如果点G在长方形ABCD的外部,如图2所示,DF=kDC(k>1),请用含k的代数式表示$\frac{AD}{AB}$的值.

查看答案和解析>>

同步练习册答案