分析 过E作EN⊥AC于N,并连接EB、EC,可证得△FAE≌△NAE,进一步可证得△EFB≌△ENC,可得到AC=2AF+AB,可求得AC的长.
解答
解:过E作EN⊥AC于N,并连接EB、EC.
∵EA平分∠FAC,
∴∠EAF=∠EAN,
∵EF⊥AB,EN⊥AC,
∴∠EFA=∠ENA=90°,
在△FAE和△NAE中,
$\left\{\begin{array}{l}{∠EFA=∠ENA}\\{∠EAF=∠EAN}\\{AE=AE}\end{array}\right.$,
∴△FAE≌△NAE(AAS),
∴EF=EN,AF=AN,
∵DE垂直平分BC,
∴EB=EC,
在Rt△EFB和Rt△ENC中,
$\left\{\begin{array}{l}{EF=EN}\\{EB=EC}\end{array}\right.$,
∴Rt△EFB≌Rt△ENC(HL),
∴FB=NC,
∴AC=AN+NC=AF+BF=2AF+AB=6+7=13,
故答案为:13.
点评 本题主要考查线段垂直平分线的性质和全等三角形的判定和性质,通过证明三角形全等得出AC=2AF+AB是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | y1<y2<y3 | B. | y2<y1<y3 | C. | y3<y1<y2 | D. | y3<y2<y1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com