精英家教网 > 初中数学 > 题目详情
如图.已知A、B两点的坐标分别为A(0,2
3
),B(2,0).直线AB与反比例精英家教网函数y=
m
x
的图象交于点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.
分析:(1)设直线AB的解析式为:y=kx+b,把A(0,2
3
),B(2,0)分别代入,得到a,b方程组,解出a,b,得到直线AB的解析式;把D点坐标代入直线AB的解析式,确定D点坐标,再代入反比例函数解析式确定m的值;
(2)由y=-
3
x+2
3
和y=-
3
3
x
联立解方程组求出C点坐标(3,-
3
),利用勾股定理计算出OC的长,得到OA=OC;在Rt△OAB中,利用勾股定理计算AB,得到∠OAB=30°,从而得到∠ACO的度数;
(3)由∠ACO=30°,要OC′⊥AB,则∠COC′=90°-30°=60°,即α=60°,得到∠BOB′=60°,而∠OBA=60°,得到△OBB′为等边三角形,于是有B′在AB上,BB′=2,即可求出AB′.
解答:精英家教网解:(1)设直线AB的解析式为:y=kx+b,
把A(0,2
3
),B(2,0)分别代入,得
b=2
3
2k+b=0
,解得k=-
3
,b=2
3

∴直线AB的解析式为:y=-
3
x+2
3

∵点D(-1,a)在直线AB上,
∴a=
3
+2
3
=3
3
,即D点坐标为(-1,3
3
),
又∵D点(-1,3
3
)在反比例函数y=
m
x
的图象上,
∴m=-1×3
3
=-3
3

∴反比例函数的解析式为:y=-
3
3
x


(2)过C点作CE⊥x轴于E,如图,
根据题意得
y=-
3
x+2
3
y= -
3
3
x
,解得
x=-1
y=3
3
x=3
y=-
3

∴C点坐标为(3,-
3
),
∴OE=3,CE=
3

∴OC=
32+(
3
)
2
=2
3

而OA=2
3

∴OA=OC,
又∵OB=2,
∴AB=
(2
3
)
2
+22
=4,
∴∠OAB=30°,
∴∠ACO=30°;

(3)∵∠ACO=30°,
而要OC′⊥AB,
∴∠COC′=90°-30°=60°,
即△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为60°时,OC′⊥AB;如图,
∴∠BOB′=60°,
∴点B'在AB上,
而∠OBA=60°,
∴BB′=2,
∴AB′=4-2=2.
点评:本题考查了利用待定系数法求图象的解析式.也考查了点在函数图象上,点的横纵坐标满足函数图象的解析式和旋转的性质以及含30度的直角三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知A、C两点在双曲线y=
1x
上,点C的横坐标比点A的横坐标多2,AB⊥x轴,CD⊥x轴,CE⊥AB,垂足分别是B、D、E.
(1)当A的横坐标是1时,求△AEC的面积S1
(2)当A的横坐标是n时,求△AEC的面积Sn
(3)当A的横坐标分别是1,2,…,10时,△AEC的面积相应的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福田区二模)如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
11
3
11
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A、B两点的坐标分别为(2
3
,0)、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角,连接AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、N两点移动过程,它们的和是否有变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知E、F两点在线段BC上,AB=AC,BF=CE,你能判断线段AF和AE的大小关系吗?说明理由.

查看答案和解析>>

同步练习册答案