精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;

(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

【答案】(1)y=﹣x2+x+4;(2)N(3,0);(3)OM=AC.

【解析】

试题分析:(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;

(2)可设N(n,0),则可用n表示出ABN的面积,由NMAC,可求得,则可用n表示出AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;

(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在RtAOB和RtAOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.

试题解析:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得

解得

二次函数的表达式为y=﹣x2+x+4;

(2)设点N的坐标为(n,0)(﹣2n8),

则BN=n+2,CN=8﹣n.

B(﹣2,0),C(8,0),

BC=10,

在y=﹣x2+x+4令x=0,可解得y=4,

点A(0,4),OA=4,

SABN=BNOA=(n+2)×4=2(n+2),

MNAC,

0,

当n=3时,即N(3,0)时,AMN的面积最大;

(3)当N(3,0)时,N为BC边中点,

MNAC,

M为AB边中点,

OM=AB,

AB=,AC=

AB=AC,

OM=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中国汉字博大精深,下列汉字是(近似于)轴对称图形的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx+b经过点A(5,0),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各组数据中能作为直角三角形的三边长的是(
A.
B.1,1,
C.4,5,6
D.1, ,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得DAC=45°,DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:

请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在70分及其以上的人数有
(2)补全下表中空缺的三个统计量:

平均数(分)

中位数(分)

众数(分)

一班

77.6

80

二班

90


(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】人的身高h随时间t的变化而变化,那么下列说法正确的是( )

A.h,t都是不变量 B.t是自变量,h是因变量

C.h,t都是自变量 D.h是自变量,t是因变量

查看答案和解析>>

同步练习册答案