精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x22x+c的顶点A在直线ly=x5上.

1)求抛物线顶点A的坐标;

2)设抛物线与y轴交于点B,与x轴交于点CDC点在D点的左侧),试判断ABD的形状;

3)在直线l上是否存在一点P,使以点PABD为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

【答案】1A1﹣4);

2ABD是直角三角形,理由见解析;

3)存在点P﹣2﹣7)或P4﹣1),使以点ABDP为顶点的四边形是平行四边形.

【解析】试题分析:(1)先根据抛物线的解析式得出其对称轴方程,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.

2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则ABADBD三边的长可得,然后根据边长确定三角形的形状.

3)若以点PABD为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.

1顶点A的横坐标为,且顶点在y=x﹣5上,

x=1时,y=1-5=-4

∴A1-4).

2)将A1-4)代入y=x2-2x+c,可得,1-2+c=-4c=-3

∴y=x2-2x-3

∴B0-3

y=0时,x2-2x-3=0x1=-1x2=3

∴C-10),D30),

∵BD2=OB2+OD2=18AB2=4-32+12=2AD2=3-12+42=20

∴BD2+AB2=AD2

∴∠ABD=90°,即△ABD是直角三角形.

3)由题意知:直线y=x-5y轴于点E0-5),交x轴于点F50

∴OE=OF=5

∵OB=OD=3

∴△OEF△OBD都是等腰直角三角形

∴BD∥l,即PA∥BD

则构成平行四边形只能是PADBPABD,如图,

过点Py轴的垂线,过点Ax轴的垂线交过P且平行于x轴的直线于点G

Px1x1-5),则G1x1-5

PG=|1-x1|AG=|5-x1-4|=|1-x1|

PA=BD=3

由勾股定理得:

1-x12+1-x12=18x12-2x1-8=0x1=-24

∴P-2-7)或P4-1),

存在点P-2-7)或P4-1)使以点ABDP为顶点的四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】哈尔滨地铁二号线正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.

(1)求该车队有载重量8吨、10吨的卡车各多少辆?

(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为解方程(x2﹣12﹣5x2﹣1+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则

x2﹣1=y2,原方程化为y2﹣5y+4=0

解得y1=1y2=4

y=1时,x21=1x2=2x=±

y=4时,x21=4x2=5x=±

∴原方程的解为x1=x2=x3=x4=

解答问题:

1)填空:在由原方程得到方程①的过程中,利用   法达到了降次的目的,体现了   的数学思想.

2)解方程:x4﹣x2﹣6=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,5)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ab为有理数,下列说法: ab互为相反数,则,则,则是正数.其中正确的有

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于圆O,连结BD,BAD=100°,DBC=80°.

(1)求证:BD=CD;

(2)若圆O的半径为9,求的长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1和图2,半圆O的直径AB=4,点P(不与点A,B重合)为半圆上一点,将图形沿着BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.

(1)如图1,当α=22.5°时,过点A′A′CAB,判断A′C与半圆O的位置关系,并说明理由.

(2)如图2,当α=   时,点O′落在上.当α=   时,BA′与半圆O相切.

(3)当线段B O′与半圆O只有一个公共点B时,α的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:如图,已知AMBN,∠A60°,点P是射线AM上一动点(与点A不重合).BCBD别平分∠ABP和∠PBN,分别交射线AM于点CD

1)求∠ABN、∠CBD的度数;根据下列求解过程填空.

解:∵AMBN

∴∠ABN+A180°

∵∠A60°

∴∠ABN   

∴∠ABP+PBN120°

BC平分∠ABPBD平分∠PBN

∴∠ABP2CBP、∠PBN   ,(   

2CBP+2DBP120°

∴∠CBD=∠CBP+DBP   

2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.

3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.

查看答案和解析>>

同步练习册答案