已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△APQ∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
解:(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C。
在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,
∴△APQ∽△ABC。
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5。
∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ。
(I)当点P在线段AB上时,如题图1所示,
由(1)可知,△APQ∽△ABC,
∴,即,解得:。
∴。
(II)当点P在线段AB的延长线上时,如题图2所示,
∵BP=BQ,∴∠BQP=∠P。
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A。∴BQ=AB。
∴AB=BP,点B为线段AB中点。
∴AP=2AB=2×3=6。
综上所述,当△PQB为等腰三角形时,AP的长为或6。
解析试题分析:(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC。
(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.
(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;
(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP。
科目:初中数学 来源: 题型:解答题
观察计算:
当,时,与的大小关系是_________________.
当,时,与的大小关系是_________________.
探究证明:
如图所示,为圆O的内接三角形,为直径,过C作于D,设,BD=b.
(1)分别用表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
归纳结论:
根据上面的观察计算、探究证明,你能得出与的大小关系是:______________.
实践应用:
要制作面积为4平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示,将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示,观察图2可知:与BC相等的线段是______,∠CAC′=______°。
问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论.,
拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H,若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135º,得到矩形EFGH(点E与O重合).
(1)若GH交y轴于点M,则∠FOM= ,OM= .
(2)将矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4-2时,S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
一天晚上,黎明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,AC=8,
(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;
(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当 PQC三点恰好构成黄金圆时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知,如图,ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题:
(1)当t为何值时,四边形AQDM是平行四边形?
(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形ANPM的面积是ABCD面积的一半,若存在,求出相应的t值,若不存在,说明理由
(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成的两部分?若存在,求出相应的t值,若不存在,说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.
(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com