【题目】如图,在△ABC中,AB=2,BC=4,其两条外角平分线AD、CD交于点D,且∠ADC=45°,连接BD交AC于点P,过点P作PE⊥AC交BC于点F,交AB的延长线于点E.
(1)求证:∠ABC=90° ;
(2)求S△PFC:S△PBF的值.
【答案】(1)见解析;(2).
【解析】
(1)设∠BAC=,∠ACB=,然后分别表示出∠DAC和∠DCA,利用三角形内角和可求出,即可得证;
(2)由角平分线的性质易得BD平分∠ABC,过P作PG⊥BD,易证△PBE≌△PGC,然后证明△PCF≌△PEA,可得CF=AE,设BF=x,则CF=AE=4-x,可得BE=2-x,由BF与BE的比例关系可解出x,得到BF与FC的比例关系即为面积比.
解:(1)设∠BAC=,∠ACB=,
∵AD、CD为△ABC的外角平分线,
∴∠DAC=
∠DCA=
在△ACD中,∠DAC+∠ACD+∠ADC=180°,
即
∴
∴∠ABC=
(2)如图所示,过D作DN⊥AB于点N,DM⊥BC于点M,DH⊥AC于点H,
∵AD平分∠CAN,CD平分∠ACM,
∴DN=DH,DH=DM
∴DN=DM
∴BD平分∠ABC
又∵∠ABC=90°,
∴∠PBC=45°,
过P作PG⊥PB,交BC于点G,如图,
∴∠PBG=∠PGB=45°
∴PB=PG
∵∠PCG+∠BAC=90°,∠E+∠BAC=90°
∴∠PCG=∠E
∵PE⊥AC
∴∠CPG+∠GPF=90°
又∵∠EPB+∠GPF=90°
∴∠CPG=∠EPB
在△PBE和△PGC中,
∴△PBE≌△PGC(AAS)
∴PE=PC
在△PCF和△PEA中,
∴△PCF≌△PEA(ASA)
∴CF=AE
设BF=x,则CF=AE=4-x,BE=AE-AB=2-x,
∵∠ACB=∠E,∠ABC=∠FBE=90°,
∴△ABC∽△FBE
∴
即,解得x=
∴CF=
∴
即S△PFC:S△PBF的值为.
科目:初中数学 来源: 题型:
【题目】如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去B.带②去C.带③去D.带①和②去
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.
(1)求打折前每本笔记本的售价是多少元?
(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知△ABC为等边三角形,动点D在边AC上,动点P在边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连结AP、BD交于Q,两点运动的过程中,AP=BD成立吗?请证明你的结论.
(2)如果把原题中的“动点D在边AC上,动点P在边BC上,”改为:“动点D在射线CA上、动点P在射线BC上运动,”其他条件不变,如图2所示,AP=BD还成立吗?说明理由,并求出∠BQP的大小.
(3)如果把原题中的“动点P在边BC上”,改为“动点P在射线AB上运动”,连结DP交BC于E,其他条件不变,如图3,则动点D、P在运动过程中,请你写出DE与PE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:BF为△ABC的外角∠ABE的平分线,D为BF上一点,且AD=CD.
(1)如图1,过点D作DH⊥CE于点H,若AB=8,BC=6,求BH的长.
(2)如图2,若∠ABC=24°,∠ABD=78°,∠BAD=60°,求∠BAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】动手操作:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=4,点D为边AC上一动点,DE⊥AB交AB于点E,将∠A沿直线DE折叠,点A的对应点为F.当△DFC是直角三角形时,AD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°;③BE+DC=DE; ④BE+DC=DE,其中正确的是( )
A. ②④ B. ①④ C. ②③ D. ①③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com