精英家教网 > 初中数学 > 题目详情

【题目】动手操作:如图,在RtABC中,∠ACB=90°AC=8BC=4,点D为边AC上一动点,DEABAB于点E,将∠A沿直线DE折叠,点A的对应点为F.当△DFC是直角三角形时,AD的长为_____

【答案】3

【解析】

由折叠可得∠A=∠AFDADDF,由∠ACB90°,∠DFC90°,可证∠BFC=∠B,即CFBC4,根据勾股定理可求AD的长.

解:由折叠的性质可得,∠A=∠AFDADDF

DFC是直角三角形时,只有∠DFC90°这一种情况,

又∵∠ACB90°

∴∠A+∠B90°,∠AFD+∠BFC90°

∴∠BFC=∠B

FCBC4

RtDFC中,CD2DF2FC2

∴(8AD2AD242

AD3

故答案为3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A、B的坐标分别为(0,2)、(1,0),顶点C在函数y=x2+bx-1的图象上,将正方形ABCD沿x轴正方向平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′之间的距离为 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=2,BC=4,其两条外角平分线ADCD交于点D,且∠ADC=45°,连接BDAC于点P,过点PPEACBC于点F,交AB的延长线于点E

1)求证:∠ABC=90° ;

2)求SPFCSPBF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a,b,c△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状;

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AEBCEAFCDF,且∠EAF=60°,BE=2cmDF=3cm,试求平行四边形ABCD的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCDAB=AD=2A=60°BC=CD=3

1)求∠ADC的度数

2)求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点C.CDx轴,垂足为D,若OB=2OA=3OD=12.

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求CDE的面积;

(3)直接写出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市绿化部门决定利用现有的不同种类花卉搭配园艺造型,摆放于城区主要大道的两侧AB两种园艺造型均需用到杜鹃花,A种造型每个需用杜鹃花25盆,B种造型每个需用杜鹃花35盆,解答下列问题:

(1)已知人民大道两侧搭配的AB两种园艺造型共60个,恰好用了1700盆杜鹃花,AB两种园艺造型各搭配了多少个?

(2)如果搭配一个A种造型的成本W与造型个数的关系式为:W=100―x (0<x<50),搭配一个B种造型的成本为80现在观海大道两侧也需搭配AB两种园艺造型共50个,要求每种园艺造型不得少于20个,并且成本总额y(元)控制在4500元以内. 以上要求能否同时满足?请你通过计算说明理由.

查看答案和解析>>

同步练习册答案