精英家教网 > 初中数学 > 题目详情
14.下列图形中即是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

分析 根据轴对称图形与中心对称图形的概念,结合所给图形的特点进行判断即可.

解答 解:A不是轴对称图形,是中心对称图形,不符合题意;
B是轴对称图形,也是中心对称图形,符合题意;
C是轴对称图形,不是中心对称图形,不符合题意;
D是中心对称图形,也是轴对称图形,符合题意;
综上可得符合题意的有2个.
故选:B、D.

点评 本题考查了轴对称及中心对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.已知等腰三角形的两边长分別为a、b,且a、b满足$\sqrt{a-2}+(b-3)^{2}$=0,则此等腰三角形的周长为(  )
A.7或8B.6或10C.6或7D.7或10

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知A(x1,y1)、B(x2,y2)均在反比例函数y=$\frac{2}{x}$的图象上,若x1<0<x2,则y1、y2的大小关系为(  )
A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,D为AC的中点,E是线段AB边上一动点,连接ED、EC,则△CDE周长的最小值为(  )
A.3$\sqrt{5}$B.3$\sqrt{3}$C.3$\sqrt{3}$+3D.3$\sqrt{5}$+3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在△ABC中,AB=AC=8cm,BC=6cm,D为AB中点,点P在AC上从C向A运动,运动速度为2(cm/s);同时,点Q在BC上从B向C运动,设点Q的运动速度为x(cm/s).且设P,Q的运动时间均为t秒,若其中一点先到达终点,则另一个点也将停止运动.

(1)如图2,当PD∥BC时,请解决下列问题:
①t=2;
②△ADP的形状为等腰三角形(按“边”分类);
③若此时恰好有△BDQ≌△CPQ,请求出点Q运动速度x的值;
(2)当PD与BC不平行时,也有△BDQ与△CPQ全等:
①请求出相应的t与x的值;
②若设∠A=α°,请直接写出相应的∠DQP的度数(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某车间有技工85人,平均每人每天可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件正好配成一套.要使每天加工的甲、乙两种部件刚好配套,则应安排加工甲、乙两种部件的人数分别为多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.探究题:
(1)问题发现:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
填空:①∠AEB的度数为60°;直接写出结论,不用证明.
②线段AD、BE之间的数量关系是AD=BE.直接写出结论,不用证明.
(2)拓展探究:
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
猜想:①∠AEB=90°;②AE=BE+2CM(CM、AE、BE的数量关系).
证明:①∠AEB=90°,②AE=BE+2CM
(3)解决问题:
如果,如图2,AD=x+y,CM=x-y,试求△ABE的面积(用x,y表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.一个自然数(即非负整数)若能表示成两个自然数的平方差,则称这个自然数为“好数”.例如,16=52-32就是一个“好数”.
(1)2014是不是“好数”?说明理由.
(2)从小到大排列,第2014个“好数”是哪个自然数?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.给出下列数:-$\frac{1}{3}$,-2.5,0,-1%,其中负分数有3个.

查看答案和解析>>

同步练习册答案