【题目】如图6,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2.5小时后到达C点,总共航行了208千米,已知水流的速度是2千米/时。
(1)求游艇在静水中的速度。
(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需多少时间?(结果保留一位小数)
【答案】(1)38千米/时;(2)5.5小时
【解析】试题分析:(1)游艇在静水中的速度为x千米/时,则顺流航行速度为(x+2)千米/时,逆流航行的速度为(x﹣2)千米/时,根据路程=速度×时间即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据路程=速度×时间分别算出AB、BC段的路程,再根据时间=路程÷速度即可得出返回所需时间.
试题解析:解:(1)设游艇在静水中的速度为x千米/时,则游艇顺流航行的速度为(x+2)千米/时,逆流航行的速度为(x-2)千米/时,根据题意得:
3(x-2)+2.5(x+2)=208,解得x=38.
答:游艇在静水中的速度为38千米/时.
(2)由(1)可知,顺流航行速度为40千米/小时,逆流航行的速度为36千米/小时.
AB段的路程为3×36=108(千米),BC段的路程为2.5×40=100(千米),故原路返回时间为: ≈2.8+2.7=5.5(小时).
答:游艇用同样的速度原路返回大约需要5.5小时.
科目:初中数学 来源: 题型:
【题目】如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.
(1)请你判断BF与CD的位置关系,并说明理由;
(2)求∠3的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).
(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?
(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)若AB∥x轴,求t的值;
(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com