精英家教网 > 初中数学 > 题目详情

【题目】A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:


(1)请将表和图1中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角的度数是.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.

【答案】解:(1)补充图形如下:

(2)360°×40%=144°;
(3)A的投票得分是:300×35%=105(分),
则A的最后得分是:=92(分);
B的投票得到是:300×40%=120(分),
则B的最后得分是:=98(分);
C的投票得分是:300×25%=75(分),
则C的最终得分是:=84(分).
所以B当选.
【解析】(1)根据C的笔试成绩是90分即可作图;
(2)利用B所占的比例乘以360度即可求解;
(3)首先求得A、B、C的投票得分,然后利用加权平均数公式即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线AB∥CD

1)如图1,直接写出∠ABE∠CDE∠BED之间的数量关系是   

2)如图2BFDF分别平分∠ABE∠CDE,那么∠BFD∠BED有怎样的数量关系?请说明理由.

3)如图3,点E在直线BD的右侧,BFDF仍平分∠ABE∠CDE,请直接写出∠BFD∠BED的数量关系   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两组数据:3,m,2n,5与m,6,n的平均数都是6,若将这两组数据合并为一组数据,求这组新数据的中位数、众数、方差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.

(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AD是BC边上的高,BD=3,CD=1,AD=2,P、Q、R分别是BC、AB、AC边上的动点,则△PQR周长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】棱长为a的小正方体,按照如图所示的方法一直维续摆放,自上而下分别叫第1层、第2层、……n(n0)层,第n层的小方体的个数记为S.

(1)完成下表:

n

1

2

3

4

S

1

3

_____

_____

(2)上述活动中,自变量和因变量分别是什么?

(3)研究上表可以发现Sn的增大而增大,且有一定的规律,请你用式子来表示Sn的关系,并计算当n=10S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).
(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,
①试说明EF是圆的直径;
②判断△AEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC逆时针旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角∠A CA′的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC=90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图2所示,设△AEF的移动时间为t(s)(0<t<4).
(1)当t=1时,求EH的长度;
(2)若EG⊥AG,求证:EG2=AEHG;
(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.

查看答案和解析>>

同步练习册答案