·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÖ±ÏßAB£ºy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬½«µãB£¨-4£¬m£©´úÈëy=-$\frac{3}{5}$x+$\frac{8}{5}$¿ÉµÃB£¨-4£¬4£©£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÅ×ÎïÏߣ»
£¨2£©Ö±Ïßy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬Áîx=0£¬¿ÉÇóC£¨0£¬$\frac{8}{5}$£©£¬Éè¹ýµãCµÄÖ±Ïßl½âÎöʽΪy=k¡äx+$\frac{8}{5}$£¬ÁªÁ¢$\left\{\begin{array}{l}{y=k¡äx+\frac{8}{5}}\\{y=\frac{2}{5}{x}^{2}+\frac{3}{5}x}\end{array}\right.$£¬ÏûÈ¥y²¢ÕûÀíµÃ2x2+£¨3-5k¡ä£©x-8=0£¬¸ù¾ÝµãE¡¢F¹ØÓÚµãC¶Ô³Æ£¬µÃµ½µãCÊÇÏß¶ÎEFµÄÖе㣬µÃµ½$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{5k¡ä-3}{4}$=0£¬¿ÉÇóÖ±Ïßl£ºy=$\frac{3}{5}$x+$\frac{8}{5}$£¬Ôò2x2+£¨3-5¡Á$\frac{3}{5}$£©x-8=0£¬½âµÃx=¡À2£¬½øÒ»²½µÃµ½E£¨-2£¬$\frac{2}{5}$£©£»
£¨3£©ÈçͼËùʾ£¬¹ýµãE×÷GH¡ÍAGÓÚH£¬ÔòAG=3£¬GH=1£¬EG=$\frac{3}{5}$£¬EH=$\frac{2}{5}$£¬OH=2£¬¸ù¾ÝÈý½Çº¯ÊýºÍÈý½ÇÐÎÏàËÆµÄÅж¨ºÍÐÔÖʵõ½Pµã×ø±ê£¬Í¬Àí£¬µãP¹ØÓÚÖ±ÏßOB£ºy=-xµÄ¶Ô³Æµãp¡äÒ²·ûºÏÌâÒ⣬´Ó¶øÇó½â£®
½â´ð ½â£º£¨1£©½«µãA£¨1£¬1£©´úÈëÖ±Ïßy=kx+$\frac{8}{5}$µÃk+$\frac{8}{5}$=1£¬½âµÃk=-$\frac{3}{5}$£¬
ÔòÖ±ÏßAB£ºy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬
½«µãB£¨-4£¬m£©´úÈëy=-$\frac{3}{5}$x+$\frac{8}{5}$µÃm=-$\frac{3}{5}$¡Á£¨-4£©+$\frac{8}{5}$£¬½âµÃm=4£¬
ÔòB£¨-4£¬4£©£¬
¡ßÅ×ÎïÏßy=ax2+bx+c¾¹ýµãA£¬O£¬B£¬
¡à$\left\{\begin{array}{l}{a+b+c=1}\\{16a-4b+c=4}\\{c=0}\end{array}\right.$£¬
½âµÃa=$\frac{2}{5}$£¬b=$\frac{3}{5}$£¬c=0£®
¡àÅ×ÎïÏߵĺ¯Êý±í´ïʽΪy=$\frac{2}{5}$x2+$\frac{3}{5}$x£»
£¨2£©Ö±Ïßy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬Áîx=0£¬½âµÃy=$\frac{8}{5}$£¬
ÔòC£¨0£¬$\frac{8}{5}$£©£¬
Éè¹ýµãCµÄÖ±Ïßl½âÎöʽΪy=k¡äx+$\frac{8}{5}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k¡äx+\frac{8}{5}}\\{y=\frac{2}{5}{x}^{2}+\frac{3}{5}x}\end{array}\right.$£¬
ÏûÈ¥y²¢ÕûÀíµÃ2x2+£¨3-5k¡ä£©x-8=0£¬
ÁîE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬ÔòÓÐx1+x2=$\frac{5k¡ä-3}{2}$£¬
¡ßµãE¡¢F¹ØÓÚµãC¶Ô³Æ£¬
¡àµãCÊÇÏß¶ÎEFµÄÖе㣬
¡à$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{5k¡ä-3}{4}$=0£¬½âµÃk¡ä=$\frac{3}{5}$£¬
¡àÖ±Ïßl£ºy=$\frac{3}{5}$x+$\frac{8}{5}$£¬
¡à2x2+£¨3-5¡Á$\frac{3}{5}$£©x-8=0£¬
½âµÃx=¡À2£¬
¡ßEÔÚFµÄ×ó²à£¬
¡àE£¨-2£¬$\frac{2}{5}$£©£»
£¨3£©OA=$\sqrt{2}$£¬OB=4$\sqrt{2}$£¬OE=$\frac{2\sqrt{26}}{5}$£¬AE=$\frac{3\sqrt{26}}{5}$£¬
ÈçͼËùʾ£¬¹ýµãE×÷GH¡ÍAGÓÚH£¬ÔòAG=3£¬GH=1£¬EG=$\frac{3}{5}$£¬EH=$\frac{2}{5}$£¬OH=2£¬
¡àtan¡ÏEAG=$\frac{EG}{AG}$=$\frac{1}{5}$=$\frac{EH}{OH}$=tan¡ÏEOH£¬
¡à¡ÏEAG=¡ÏEOH£¬
ÓÖ¡ß¡ÏOAG=¡ÏBOH£¬
¡à¡ÏOAE=¡ÏBOE£¬
¡à´æÔÚµãP£¬Ê¹µÃ¡÷BOP¡×¡÷OAE£¨OÓëAÊǶÔÓ¦µã£©£¬
ÔòÉäÏßOEµÄ½âÎöʽΪ£ºy=$\frac{1}{5}$x£¬
¡àÉèP£¨m£¬$\frac{1}{5}$m£©£¨m£¼0£©£¬ÔòOP=$\frac{\sqrt{26}}{5}$m£¬
¡ß¡÷BOP¡×¡÷OAE£¨OÓëAÊǶÔÓ¦µã£©£¬
¡à$\frac{OP}{OB}$=$\frac{AE}{OA}$»ò$\frac{OP}{OB}$=$\frac{OA}{AE}$£¬¼´-$\frac{\frac{\sqrt{26}}{5}m}{4\sqrt{2}}$=$\frac{\frac{3\sqrt{26}}{5}}{\sqrt{2}}$»ò-$\frac{\frac{\sqrt{26}}{5}m}{4\sqrt{2}}$=$\frac{\sqrt{2}}{\frac{3\sqrt{26}}{5}}$£¬
½âµÃm1=-12£¬m2=-$\frac{100}{39}$£¬
¡àp1£¨-12£¬$\frac{12}{5}$£©£¬p2£¨-$\frac{100}{39}$£¬$\frac{20}{39}$£©£¬
ͬÀí£¬µãp¹ØÓÚÖ±ÏßOB£ºy=-xµÄ¶Ô³Æµãp¡äÒ²·ûºÏÌâÒ⣬
¡àp3£¨-$\frac{12}{5}$£¬12£©£¬p4£¨-$\frac{20}{39}$£¬$\frac{100}{39}$£©£®
µãÆÀ ¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ÇóÖ±ÏߵĽâÎöʽ£¬´ý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ£¬¶Ô³ÆµÄÐÔÖÊ£¬Èý½Çº¯Êý£¬Èý½ÇÐÎÏàËÆµÄÅж¨ºÍÐÔÖʵÈ֪ʶµã£¬×¢ÒâÊýÐνáºÏºÍ·½³Ì˼ÏëµÄÓ¦Óã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{25}{4}$¦Ðcm | B£® | $\frac{15}{2}$¦Ðcm | C£® | $\frac{5}{2}$¦Ðcm | D£® | $\frac{5}{12}$¦Ðcm |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£©Ó루2£© | B£® | £¨1£©Ó루3£© | C£® | £¨2£©Ó루3£© | D£® | È«ÕýÈ· |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{4\sqrt{2}}{3}$ | B£® | $\frac{1}{3}$ | C£® | 3 | D£® | $\frac{3\sqrt{2}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com