14£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßy=kx+$\frac{8}{5}$Óë¾­¹ýÔ­µãOµÄÅ×ÎïÏßy=ax2+bx+c½»ÓÚµãA£¨1£¬1£©ºÍµãB£¨-4£¬m£©£¬ÓëyÖá½»ÓÚµãC
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©Éè¹ýµãCµÄÁíÒ»ÌõÖ±ÏßÓëÅ×ÎïÏß´Ó×óÖÁÓÒÒÀ´ÎÏཻÓÚE¡¢FÁ½µã£¬ÈôµãE¡¢F¹ØÓÚµãC¶Ô³Æ£¬ÇóÖ±ÏßlµÄº¯Êý±í´ïʽºÍµãEµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½ÓOA¡¢OB¡¢OE¡¢AE£¬ÔÚ×ø±êÆ½ÃæÄÚÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃÒÔB¡¢O¡¢PΪ¶¥µãµÄ¡÷BOPÓë¡÷OAEÏàËÆ£¨ÆäÖУ¬¡÷BOPµÄ¶¥µãOÓë¡÷OAEµÄ¶¥µãAÊǶÔÓ¦¶¥µã£©£¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÖ±ÏßAB£ºy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬½«µãB£¨-4£¬m£©´úÈëy=-$\frac{3}{5}$x+$\frac{8}{5}$¿ÉµÃB£¨-4£¬4£©£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÅ×ÎïÏߣ»
£¨2£©Ö±Ïßy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬Áîx=0£¬¿ÉÇóC£¨0£¬$\frac{8}{5}$£©£¬Éè¹ýµãCµÄÖ±Ïßl½âÎöʽΪy=k¡äx+$\frac{8}{5}$£¬ÁªÁ¢$\left\{\begin{array}{l}{y=k¡äx+\frac{8}{5}}\\{y=\frac{2}{5}{x}^{2}+\frac{3}{5}x}\end{array}\right.$£¬ÏûÈ¥y²¢ÕûÀíµÃ2x2+£¨3-5k¡ä£©x-8=0£¬¸ù¾ÝµãE¡¢F¹ØÓÚµãC¶Ô³Æ£¬µÃµ½µãCÊÇÏß¶ÎEFµÄÖе㣬µÃµ½$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{5k¡ä-3}{4}$=0£¬¿ÉÇóÖ±Ïßl£ºy=$\frac{3}{5}$x+$\frac{8}{5}$£¬Ôò2x2+£¨3-5¡Á$\frac{3}{5}$£©x-8=0£¬½âµÃx=¡À2£¬½øÒ»²½µÃµ½E£¨-2£¬$\frac{2}{5}$£©£»
£¨3£©ÈçͼËùʾ£¬¹ýµãE×÷GH¡ÍAGÓÚH£¬ÔòAG=3£¬GH=1£¬EG=$\frac{3}{5}$£¬EH=$\frac{2}{5}$£¬OH=2£¬¸ù¾ÝÈý½Çº¯ÊýºÍÈý½ÇÐÎÏàËÆµÄÅж¨ºÍÐÔÖʵõ½Pµã×ø±ê£¬Í¬Àí£¬µãP¹ØÓÚÖ±ÏßOB£ºy=-xµÄ¶Ô³Æµãp¡äÒ²·ûºÏÌâÒ⣬´Ó¶øÇó½â£®

½â´ð ½â£º£¨1£©½«µãA£¨1£¬1£©´úÈëÖ±Ïßy=kx+$\frac{8}{5}$µÃk+$\frac{8}{5}$=1£¬½âµÃk=-$\frac{3}{5}$£¬
ÔòÖ±ÏßAB£ºy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬
½«µãB£¨-4£¬m£©´úÈëy=-$\frac{3}{5}$x+$\frac{8}{5}$µÃm=-$\frac{3}{5}$¡Á£¨-4£©+$\frac{8}{5}$£¬½âµÃm=4£¬
ÔòB£¨-4£¬4£©£¬
¡ßÅ×ÎïÏßy=ax2+bx+c¾­¹ýµãA£¬O£¬B£¬
¡à$\left\{\begin{array}{l}{a+b+c=1}\\{16a-4b+c=4}\\{c=0}\end{array}\right.$£¬
½âµÃa=$\frac{2}{5}$£¬b=$\frac{3}{5}$£¬c=0£®
¡àÅ×ÎïÏߵĺ¯Êý±í´ïʽΪy=$\frac{2}{5}$x2+$\frac{3}{5}$x£»
£¨2£©Ö±Ïßy=-$\frac{3}{5}$x+$\frac{8}{5}$£¬Áîx=0£¬½âµÃy=$\frac{8}{5}$£¬
ÔòC£¨0£¬$\frac{8}{5}$£©£¬
Éè¹ýµãCµÄÖ±Ïßl½âÎöʽΪy=k¡äx+$\frac{8}{5}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k¡äx+\frac{8}{5}}\\{y=\frac{2}{5}{x}^{2}+\frac{3}{5}x}\end{array}\right.$£¬
ÏûÈ¥y²¢ÕûÀíµÃ2x2+£¨3-5k¡ä£©x-8=0£¬
ÁîE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬ÔòÓÐx1+x2=$\frac{5k¡ä-3}{2}$£¬
¡ßµãE¡¢F¹ØÓÚµãC¶Ô³Æ£¬
¡àµãCÊÇÏß¶ÎEFµÄÖе㣬
¡à$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{5k¡ä-3}{4}$=0£¬½âµÃk¡ä=$\frac{3}{5}$£¬
¡àÖ±Ïßl£ºy=$\frac{3}{5}$x+$\frac{8}{5}$£¬
¡à2x2+£¨3-5¡Á$\frac{3}{5}$£©x-8=0£¬
½âµÃx=¡À2£¬
¡ßEÔÚFµÄ×ó²à£¬
¡àE£¨-2£¬$\frac{2}{5}$£©£»
£¨3£©OA=$\sqrt{2}$£¬OB=4$\sqrt{2}$£¬OE=$\frac{2\sqrt{26}}{5}$£¬AE=$\frac{3\sqrt{26}}{5}$£¬
ÈçͼËùʾ£¬¹ýµãE×÷GH¡ÍAGÓÚH£¬ÔòAG=3£¬GH=1£¬EG=$\frac{3}{5}$£¬EH=$\frac{2}{5}$£¬OH=2£¬
¡àtan¡ÏEAG=$\frac{EG}{AG}$=$\frac{1}{5}$=$\frac{EH}{OH}$=tan¡ÏEOH£¬
¡à¡ÏEAG=¡ÏEOH£¬
ÓÖ¡ß¡ÏOAG=¡ÏBOH£¬
¡à¡ÏOAE=¡ÏBOE£¬
¡à´æÔÚµãP£¬Ê¹µÃ¡÷BOP¡×¡÷OAE£¨OÓëAÊǶÔÓ¦µã£©£¬
ÔòÉäÏßOEµÄ½âÎöʽΪ£ºy=$\frac{1}{5}$x£¬
¡àÉèP£¨m£¬$\frac{1}{5}$m£©£¨m£¼0£©£¬ÔòOP=$\frac{\sqrt{26}}{5}$m£¬
¡ß¡÷BOP¡×¡÷OAE£¨OÓëAÊǶÔÓ¦µã£©£¬
¡à$\frac{OP}{OB}$=$\frac{AE}{OA}$»ò$\frac{OP}{OB}$=$\frac{OA}{AE}$£¬¼´-$\frac{\frac{\sqrt{26}}{5}m}{4\sqrt{2}}$=$\frac{\frac{3\sqrt{26}}{5}}{\sqrt{2}}$»ò-$\frac{\frac{\sqrt{26}}{5}m}{4\sqrt{2}}$=$\frac{\sqrt{2}}{\frac{3\sqrt{26}}{5}}$£¬
½âµÃm1=-12£¬m2=-$\frac{100}{39}$£¬
¡àp1£¨-12£¬$\frac{12}{5}$£©£¬p2£¨-$\frac{100}{39}$£¬$\frac{20}{39}$£©£¬
ͬÀí£¬µãp¹ØÓÚÖ±ÏßOB£ºy=-xµÄ¶Ô³Æµãp¡äÒ²·ûºÏÌâÒ⣬
¡àp3£¨-$\frac{12}{5}$£¬12£©£¬p4£¨-$\frac{20}{39}$£¬$\frac{100}{39}$£©£®

µãÆÀ ¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ÇóÖ±ÏߵĽâÎöʽ£¬´ý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ£¬¶Ô³ÆµÄÐÔÖÊ£¬Èý½Çº¯Êý£¬Èý½ÇÐÎÏàËÆµÄÅж¨ºÍÐÔÖʵÈ֪ʶµã£¬×¢ÒâÊýÐνáºÏºÍ·½³Ì˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ê±ÖӵķÖÕ볤5cm£¬¾­¹ý15·ÖÖÓ£¬ËüµÄÕë¼âת¹ýµÄ»¡³¤ÊÇ£¨¡¡¡¡£©
A£®$\frac{25}{4}$¦ÐcmB£®$\frac{15}{2}$¦ÐcmC£®$\frac{5}{2}$¦ÐcmD£®$\frac{5}{12}$¦Ðcm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÒ»´Îº¯Êýy=kx-4£¬º¯ÊýÖµyËæxµÄÖµÔö´ó¶ø¼õС£¬ÄÇôkµÄȡֵ·¶Î§ÊÇk£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªRt¡÷ABC£¬¡ÏBAC=90¡ã£¬½«¡÷ABCÈÆµãC˳ʱÕëÐýתµÃµ½¡÷DEC£¨DÓëAÊǶÔÓ¦µã£©£¬Ö±ÏßDAÓëÖ±ÏßBE½»ÓÚµãF£®

£¨1£©ÇóÖ¤£ºBF=EF£»
£¨2£©Èçͼ2Ëùʾ£¬µãEÂäÔÚÉäÏßCAÉÏ£¬Á¬½ÓCF½»ABÓÚµãG£¬¡ÏABCµÄ½Çƽ·ÖÏß½»CFÓÚµãH£¬PΪBHÉÏÒ»µã£¬ÇÒBH=4PH£¬Ö±ÏßAP½»CFÓÚµãM£¬½»BCÓÚµãN£¬ÈôAF£ºAD=5£º6£¬ÇëÄã̽¾¿Ïß¶ÎNPÓëMAÖ®¼äµÄÊýÁ¿¹ØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª£ºÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=BC£¬Ö±ÏßlÈÆµãAÐýת£¬¹ýµãB£¬C·Ö±ðÏòÖ±Ïßl×÷´¹Ïߣ¬´¹×ã·Ö±ðΪµãD£¬µãE£®
£¨1£©Èçͼ1£¬ÇóÖ¤£ºBD+CE=AE£»
£¨2£©µ±Ö±ÏßlÈÆµãA˳ʱÕëÐýתµ½Èçͼ2£¬ÔòBD£¬CE£¬AEÖ®¼äÂú×ãµÄÊýÁ¿¹ØÏµÊÇBD+AE=CE
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÉèCEÓëAB½»ÓÚµãP£¬ÈôAP=$\sqrt{5}$£¬CP=5£¬Á¬½ÓBE£¬CD£¬Ïß¶ÎCD·Ö±ðÓëÏß¶ÎBP£¬Ïß¶ÎBEÏཻÓÚM£¬NÁ½µã£¨Èçͼ3£©£¬ÇóÏß¶ÎMNµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÔAC±ßΪֱ¾¶µÄ¡ÑO½»BCÓÚµãD£¬¹ýµãB×÷BG¡ÍAC½»¡ÑOÓÚµãE¡¢H£¬Á¬AD¡¢ED¡¢EC£®ÈôBD=8£¬DC=6£¬ÔòCEµÄ³¤Îª2$\sqrt{21}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®°ÑÁ½¿éÈ«µÈµÄÖ±½ÇÈý½Ç°åABCºÍDEFµþ·ÅÔÚÒ»Æð£¬Ê¹Èý½Ç°åDEFµÄÈñ½Ç¶¥µãDÓëÈý½Ç°åABCµÄб±ßÖеãOÖØºÏ£¬DF¾­¹ýµãB£¬ÆäÖСÏABC=¡ÏDEF=90¡ã£¬¡ÏC=¡ÏF=45¡ã£¬AB=DE=4£¬°ÑÈý½Ç°åABC¹Ì¶¨²»¶¯£¬ÈÃÈý½Ç°åDEFÈÆµãOÄæÊ±ÕëÐýת£¬Ðýת½ÇΪ¦Á£®ÆäÖÐ0¡ã£¼¦Á£¼90¡ã£¬ÉèÉäÏßDEÓëÉäÏßABÏཻÓÚµãP£¬ÉäÏßDFÓëÏß¶ÎBCÏཻÓÚµãQ£®ÏÂÃæÈý¸ö½áÂÛ£º
£¨1£©¡÷APD¡×¡÷CDQ£»
£¨2£©AP•CQµÄÖµ²»±ä£¬Îª8£»
£¨3£©µ±45¡ã¡Ü¦Á£¼90¡ãʱ£¬ÉèCQ=x£¬Á½¿éÈý½Ç°åÖØµþÃæ»ýΪ$y=4-x-\frac{8-4x}{4-x}$£®
ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨1£©Ó루2£©B£®£¨1£©Ó루3£©C£®£¨2£©Ó루3£©D£®È«ÕýÈ·

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈôtanA=$\frac{\sqrt{2}}{4}$£¬ÔòsinAµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{4\sqrt{2}}{3}$B£®$\frac{1}{3}$C£®3D£®$\frac{3\sqrt{2}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣺cos30¡ã•sin60¡ã=$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸