精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为______.
当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC=
42+32
=5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2
∴x2+22=(4-x)2,解得x=
3
2

∴BE=
3
2

②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为
3
2
或3.
故答案为:
3
2
或3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,x轴上的动点M(x,0)到定点P(5,5)、Q(2,1)的距离分别为MP和MQ,那么,当MP+MQ取最小值时,点M的横坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为(  )
A.1个B.2个C.3个D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰直角三角形ABC的斜边BC的长为8,直线MNBC且与AB、AC分别交于M、N,将△AMN沿直线MN翻折得△A′MN,设△A′MN与△ABC重合部分面积为y,MN=x,
(1)当A′在△ABC内部时,求y与x的函数关系式,并求x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的
1
3
?若存在,求对应的x值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明;
(2)若BD=1,CD=2,试求四边形AEMF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

11月9日是全国消防安全日,下面消防图标中是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,矩形纸片ABCD的边AD=3,CD=2,点P是边CD上的一个动点(不与点C重合,把这张矩形纸片折叠,使点B落在点P的位置上,折痕交边AD于点M,折痕交边BC于点N.
(1)写出图中的全等三角形.设CP=x,AM=y,写出y与x的函数关系式;
(2)试判断∠BMP是否可能等于90°.如果可能,请求出此时CP的长;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=13:3:2,则∠DPE的度数为(  )
A.80°B.100°C.60°D.45°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把边长为AD=12cm,AB=8cm的矩形沿着AE为折痕对折使点D落在BC上点F处,求DE的长.

查看答案和解析>>

同步练习册答案