精英家教网 > 初中数学 > 题目详情

如图,已知抛物线图象经过A(-1,0),B(4,0)两点.
(1)求抛物线的解析式;
(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
①求证:四边形DECF是矩形;
②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.

(1);(2)①证明见解析;②2.

解析试题分析:(1)根据待定系数法即可求得;
(2)把C(m,m-1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得DECF是矩形;
(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD的值为2,所以EF的最小值是2;
试题解析:(1)∵抛物线图象经过A(-1,0),B(4,0)两点,
∴根据题意,得,解得
所以抛物线的解析式为:
(2)①证明:∵把C(m,m-1)代入

解得:m=3或m=-2,
∵C(m,m-1)位于第一象限,

∴m>1,
∴m=-2舍去,
∴m=3,
∴点C坐标为(3,2),
由A(-1,0)、B(3,0)、C(3,2)得  AH=4,CH=2,BH=1,AB=5
过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,
,∠AHC=∠BHC=90°
∴△AHC∽△CHB,
∴∠ACH=∠CBH,
∵∠CBH+∠BCH=90°
∴∠ACH+∠BCH=90°
∴∠ACB=90°,
∵DE∥BC,DF∥AC,
∴四边形DECF是平行四边形,
DECF是矩形;
②存在;
连接CD
∵四边形DECF是矩形,
∴EF=CD,
当CD⊥AB时,CD的值最小,
∵C(3,2),
∴DC的最小值是2,
∴EF的最小值是2;

考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

已知点E、F在抛物线的对称轴的同侧 (点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD与x轴、直线y=2ax+b所围成图形的面积,.则S与的数量关系式为:S=              

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作?A′PBE,A′E交射线BC于点F,交射线PQ于点G.设?A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.
(1)当t为何值时,点A′与点C重合;
(2)用含t的代数式表示QF的长;
(3)求S与t的函数关系式;
(4)请直接写出当射线PQ将?A′PBE分成的两部分图形的面积之比是1:3时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在平面直角坐标系xOy中,点M为抛物线的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.
(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
①写出C点的坐标:C(              )(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.
(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;
(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;
(3)请根据图2证明:△FGC∽△PFB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

同步练习册答案