分析 (1)根据等腰直角三角形的性质可以得出△ABE≌△ACD;
(2)由△ABE≌△ACD,即可得出结论.
解答 (1)解:△ABE≌△ACD;理由如下:
∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠EAC=∠DAE+∠EAC,
∴∠BAE=∠CAD,
在△ABE和△ACD中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠BAE=∠CAD}&{\;}\\{AE=AD}&{\;}\end{array}\right.$,
∴△ABE≌△ACD(SAS)
(2)证明:由(1)得:△ABE≌△ACD,
∴DC=BE.
点评 本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.
科目:初中数学 来源: 题型:选择题
| A. | α=30°,β=30° | B. | α=105°,β=30° | C. | α=30°,β=105° | D. | α=105°,β=45° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 组别 | 学习时间x(h) | 频数(人数) |
| A | 0<x≤1 | 8 |
| B | 1<x≤2 | 24 |
| C | 2<x≤3 | 32 |
| D | 3<x≤4 | n |
| E | 4小时以上 | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{{2{x^2}}}{x}$ | B. | a+b | C. | $\frac{1}{2x+1}$ | D. | $\frac{2x-2}{x-1}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 40°50′=40.5° | |
| B. | 若线段AP=BP,则P一定是AB中点 | |
| C. | 若∠AOC=$\frac{1}{2}$∠AOB,则OC是∠AOB的平分线 | |
| D. | 连结两点的线段的长度叫做两点之间的距离 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com