精英家教网 > 初中数学 > 题目详情

【题目】已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是  

A. ①②③ B. ②③④ C. ①③④ D. ①②④

【答案】D

【解析】

利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可

: AG=AE, FAE=FAG=45°,AF=AF,

∴△AFE AFG,

EF=FG

DE=BG

EF=FG=BG+FB=DE+BF故①正确

BC=CD=AD=4EC=1

DE=3,设BF=x,则EF=x+3,CF=4-x,

RtECF中,(x+32=4-x2+12

解得x=

BF= ,AF= 故②正确,③错误,

BMAG

∴△FBM~FGA

SMEF=,故④正确,

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=

(1)求线段CD的长;

(2)求sin∠DBE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作PQMN.设运动的时间为x(s),PQMN与矩形ABCD重叠部分的图形面积为y(cm2

(1)当PQ⊥AB时,x等于多少;

(2)求y关于x的函数解析式,并写出x的取值范围;

(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=DAC上一点,DEAB于点EAC=12BC=5

1的值;

2时,求的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=

(1)求线段CD的长;

(2)求sin∠DBE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.

(1)求实 数k的取值范围;

(2)若(x1+1)(x2+1)=2,试求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的表达式为线段AB的两个端点分别为A(1,2),B(3,2)

(1)若抛物线经过原点求出的值

(2)求抛物线顶点C的坐标(用含有m的代数式表示);

(3)若抛物线与线段AB恰有一个公共点,结合函数图象,求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的周长为28,对角线ACBD相交于点O,点ECD的中点,BD=12,则△DOE的周长为(  )

A.28B.12C.13D.17

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=10,BC、CD、DA是⊙O的弦,且BC=CD=DA,若点P是直径AB上的一动点,则PD+PC的最小值为_____

查看答案和解析>>

同步练习册答案