精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以CD为直径作⊙O,交边AC于点P,连接BP,交AD于点E.
(1)求证:AD是⊙O的切线;
(2)如果PB是⊙O的切线,BC=4,求PE的长.
考点:切线的判定,相似三角形的判定与性质
专题:证明题
分析:(1)根据等腰三角形的性质由AB=AC,点D是边BC的中点得到AD⊥BC,然后根据切线的判定定理即可得到AD是⊙O的切线;
(2)连结OP,由于AD是⊙O的切线,PB是⊙O的切线,根据切线长定理得PE=DE,根据切线的性质得OP⊥PE,易证得△BDE∽△BPO,则
DE
OP
=
BD
BP
,由于BC=4,得到CD=BD=2,则OP=1,OB=3,利用勾股定理计算出BP=
OB2-OP2
=2
2
,然后利用相似比可计算出DE=
2
2
,所以PE=
2
2
解答:(1)证明:∵AB=AC,点D是边BC的中点,
∴AD⊥BC,
∴AD是⊙O的切线;

(2)解:连结OP,如图,
∵AD是⊙O的切线,PB是⊙O的切线,
∴PE=DE,OP⊥PE,
∴∠BPO=90°,
∴∠BPO=∠ADB=90°,
而∠DBE=∠PBO,
∴△BDE∽△BPO,
DE
OP
=
BD
BP

∵BC=4,
∴CD=BD=2,
∴OP=1,OB=3,
∴BP=
OB2-OP2
=
32-12
=2
2

∴DE=
1×2
2
2
=
2
2

∴PE=DE=
2
2
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了相似三角形的判定与性质和等腰三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙O上两点C、E关于直径AB对称,连接AC、BC,过C作CE的垂线,交⊙O于点D,交EB的延长线交于点F,且BC:CA=
3
:1,AB=10,
(1)证明:B是EF的中点;
(2)求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.
(1)求OA的长度;
(2)求CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

九年级1班的同学为了了解教学楼前一棵树生长情况,去年在教学楼前点A处测得树顶点C的仰角为30°,树高5米,今年他们仍在原地A处测得大树D的仰角为37°,问这棵树一年生长了多少米?(精确到0.01)
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,
3
≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

今年植树节,某校组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查部分学生的植树情况,制成如下统计表和条形统计图(均不完整).
植树数量(棵) 频数 频率
3 5 0.1
4 20
5 0.3
6 10 0.2
合计 1
(1)将统计表和条形统计图补充完整;
(2)求所抽样的学生植树数量的平均数;
(3)若植树数量不少于5棵的记为“表现优秀”,试根据抽样数据,估计该校1200名学生“表现优秀”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△CDE中,∠ACB=∠DCE=90°,AC=BC,DC=EC,且点A在CD上,连接AE、BD.
(1)求证:AE=BD;
(2)若AB=CD,将△ABC绕点C逆时针旋转一周,当以A、B、C、D为顶点的四边形是平行四边形时,直接写出旋转角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式组,并求出其最小整数解:
x-3
2
+3≥x
1-3(x-1)<8-x

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx-1的图象平分它的面积.若关于x的函数y=mx2-(3m+k)x+2m+k的图象与坐标轴只有两个交点,则m的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,BC∥AD,EF∥BC交AB于E,CD于F,P、Q分别为边AD和BC上的动点.若∠FAD=30°,AF=4
3
,点B的坐标为(3,5),则四边形PFQE的面积为
 

查看答案和解析>>

同步练习册答案