| A. | 4 | B. | 1 | C. | 3 | D. | 2 |
分析 先确定B点坐标(2,1),根据反比例函数图象上点的坐标特征得到k=2,则反比例函数解析式为y=$\frac{2}{x}$,设CD=t,则OD=1+t,所以E点坐标为(1+t,t),再根据反比例函数图象上点的坐标特征得(1+t)•t=2,利用因式分解法可求出t的值.
解答 解:∵OA=2,OC=1,
∴B点坐标为(2,1),![]()
∴k=2×1=2,
∴反比例函数解析式为y=$\frac{2}{x}$,
设CD=t,则OD=1+t,
∴E点坐标为(1+t,t),
∴(1+t)•t=2,
整理为t2+t-2=0,
解得t1=-2(舍去),t2=1,
∴正方形ADEF的边长为1.
故选B.
点评 本题考查了反比例函数图象上点的坐标特征:反比例函数y=$\frac{k}{x}$(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com