精英家教网 > 初中数学 > 题目详情

已知抛物线y=数学公式x2-4x+2m(m+x)与x轴有两个交点(x1,0),(x2,0),若数学公式
y2=-m2+6m-4
(1)当m≥0时,求y1的取值范围;
(2)当m≤-1时,比较y1与y2的大小,并说明理由.

解:原函数可化为y=x2-(4-2m)x+2m2的形式,
∴x1+x2=2(4-2m)=8-4m,x1•x2=4m2
∴y1=8-4m-
(1)当m≥0时,原函数可化为:y1=8-5m,
∵m≥0,
∴5m≥0,-5m≤0,
∴8-5m≤8,即y1≤8;
(2)当m≤-1时,y1=8-3m,
∵m≤-1,
∴8-3m≥11,即y1≥11;
∵y2可化为:y2=-(m-3)2+5,
∵m≤-1,∴m-3≤-4,
∴(m-3)2≥16,
∴-(m-3)2+5≤-11,即y2≤-11,
∴y1>y2
分析:先把函数化为y=x2-(4-2m)x+2m2的形式,再根据根与系数的关系求出x1+x2及x1•x2的值代入y1的关系式,根据(1)中m≥0及不等式的基本性质求解;
(2)根据m≤-1及不等式的基本性质可分别求出y1与y2的取值范围,再比较其大小即可.
点评:本题考查的是抛物线与x轴的交点问题,根据根与系数的关系得到y1的解析式,再由不等式的基本性质即可解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案