精英家教网 > 初中数学 > 题目详情

【题目】运城菖蒲酒产于山西垣曲.莒蒲洒远在汉代就已名噪酒坛,为历代帝王将相所喜爱,并被列为历代御膳香醪.菖蒲酒在市场的销售量会根据价格的变化而变化.菖蒲酒每瓶的成本价是元,某超市将售价定为元时,每天可以销售瓶,若售价每降低元,每天即可多销售(售价不能高于),若设每瓶降价

用含的代数式表示菖蒲酒每天的销售量.

每瓶菖蒲酒的售价定为多少元时每天获取的利润最大?最大利润是多少?

【答案】(1);(2)售价定为元时,有最大利润,最大利润为.

【解析】

依据题意列出式子即可;

依据题意可以得到y=-5x-42+1280 解出x=4时,利润最大,算出售价及最大利润即可.

解: 莒蒲酒每天的销售量为.

设每天销售菖蒲酒获得的利润为

由题意,得.

时,利润有最大值,即售价定为元时,有最大利润,最大利润为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,点A坐标为(﹣20),∠OAB=90°,∠AOB=30°,将△OAB绕点O按顺时针方向旋转,旋转角为αα≤150°),在旋转过程中,点AB的对应点分别为点A′B′

(1)如图1,当α=60°时,直接写出点A′   B′   的坐标;

(2)如图2,当α=135°时,过点B′AB的平行线交AA′延长线于点C,连接BCAB′

①判断四边形AB′CB的形状,并说明理由,

②求此时点A′和点B′的坐标;

(3)当α30°旋转到150°时,(2)中的线段B′C也随之移动,请求出B′C所扫过的区域的面积?(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为_____米(≈1.73,结果精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:,其中x是不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D04),B60).若反比例函数y=x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b

1)求反比例函数和直线EF的解析式;

2)求OEF的面积;

3)请结合图象直接写出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点BO分别落在点B1C1处,点B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2x轴上,依次进行下去若点A0),B02),则点B2018的坐标为(  )

A. 60480B. 60540C. 60482D. 60542

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yx3的图象与反比例函数y(k为常数,且k0)的图象交于A1a),B两点.

1)求反比例函数的表达式及点B的坐标;

2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,函数)的图象经过点(4,1),直线与图象交于点,与轴交于点

(1)求的值;

(2)横、纵坐标都是整数的点叫做整点.记图象在点之间的部分与线段围成的区域(不含边界)为

①当时,直接写出区域内的整点个数;

②若区域内恰有4个整点,结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2bxca≠0)的对称轴为直线x=-2,与x轴的一个交点在(-30)和(-40)之间,其部分图象如图所示.则下列结论:①4ab0;②c<0;③-3ac>0;④4a2b>at2btt为实数);⑤点是该抛物线上的点,则y1<y2<y3.其中正确结论的个数是(  )

A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案