精英家教网 > 初中数学 > 题目详情
9.多项式2x2-2xy+y2+4x+25的最小值为21.

分析 根据完全平方公式把多项式进行变形,根据非负数的性质解答即可.

解答 解:2x2-2xy+y2+4x+25
=x2-2xy+y2+x2+4x+4+21
=(x-y)2+(x+2)2+21,
∵(x-y)2≥0,(x+2)2≥0,
∴(x-y)2+(x+2)2+21≥21,
∴多项式2x2-2xy+y2+4x+25的最小值为21,
故答案为:21.

点评 本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.
(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);
(2)甲同学在数据整理后若用扇形统计图表示,则159.5-164.5这一部分所对应的扇形圆心角的度数为120°;
(3)该班学生的身高数据的中位数是160或161;
(4)假设身高在169.5-174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:($\frac{a+1}{{a}^{2}-1}$+1)•$\frac{{a}^{2}-2a+1}{a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cosB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读理解
如图1,在△ABC中,当DE∥BC时可以得到三组成比例线段:①$\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}$②$\frac{AD}{BD}=\frac{AE}{CE}$③$\frac{BD}{AB}=\frac{CE}{AC}$;反之,当对应线段成比例时也可以推出DE∥BC.

理解运用
三角形的内接四边形是指顶点在三角形各边上的四边形.
(1)如图2,已知矩形DEFG是△ABC的一个内接矩形,将矩形DEFG延CB方向向左平移得矩形PBQH,其中顶点D、E、F、G的对应点分别为F、B、Q、H,在图2中画出平移后的图形;
(2)在(1)所得图形中,连接CH并延长交BP的延长线于点R,连接AR,求证:AR∥BC;
综合实践
(3)如图3,某个区有一块三角形空地,已知△ABC空地的边AB=400米、BC=600米,∠ABC=45°;准备在△ABC内建设一个内接矩形广场DEFG(点E、F在边BC上,点D、G分别在边AB和AC上),三角形其余部分进行植被绿化,按要求欲使矩形DEFG的对角线EG最短,请在备用图中画出使对角线EG最短的矩形?并求出对角线EG最短距离(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算
(1)$\sqrt{18a}$•$\sqrt{2a}$(a≥0)
(2)$\sqrt{4\frac{1}{2}}$÷$\sqrt{2\frac{1}{4}}$
(3)$\sqrt{12}$+$\sqrt{18}$-$\sqrt{8}$-$\sqrt{32}$ 
(4)(3+$\sqrt{10}$)($\sqrt{2}$-$\sqrt{5}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.-$\frac{\sqrt{2}}{2}$的绝对值是(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为积极开展“六城同创”工作,我市绿化提质改造工程正如火如荼地进行,需要大量的甲、乙两种树苗对滨江路进行绿化改造,某树苗种植户经市场调研发现:如果单独种植甲种树苗,所获利润y(万元)与种植亩数x1(亩)之间存在正比例函数关系y=kx1,并且当种植5亩时可获利润2万元;如果单独种植乙种树苗,则所获利润y(万元)与种植亩数x2(亩)之间存在二次函数关系:y=ax22+bx2,且种植2亩时能获利润2.4万元,当种植4亩时,可获利润3.2万元
(1)请分别求出上述的正比例函数表达式与二次函数表达式
(2)如果种植户想用10亩地同时种植甲、乙两种树苗,请设计一个能获得最大利润的种植方案,并求出按此方案种植所获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.为庆祝某家电商场正式营业,该商场推出了两种购物方案,方案一:购买家电不超过3000元按商品售价支付,超出3000元则超出部分可获8折优惠,方案二:如交纳200元会费成为该商场会员,则购买家电可获9折优惠.若用x(元)表示家电售价,y(元)表示顾客支出金额.
(1)分别写出两种购物方案中y关于x的函数解析式;
(2)若某人计划购买售价为3800元的洗衣机一台,请分析选择哪种方案更省钱?

查看答案和解析>>

同步练习册答案