【题目】如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0
(1)点A表示的数为 ,点B表示的数为 ;
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为 ;
(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.
请用含t的代数式表示:点P到点A的距离PA= ,点Q到点B的距离QB= ;点P与点Q之间的距离 PQ= .
【答案】(1)﹣3, 9;(2)1;(3) ;8﹣t(0≤t≤8); .
【解析】试题分析:
(1)由|2a+6|+|b﹣9|=0结合“任何一个代数式的绝对值都是非负数”和“两个非负数的和为0,则这两个数都为0”即可求出a、b的值;
(2)由(1)中的结果可知,AB=12,结合BC=2AC即可解得BC=8,再结合OB=9即可得到OC=1,且点C在原点的右边,由此即可得到点C表示的数为1;
(3)由题意结合AB=12,BC=8可知,点P的运动时间为4秒,点Q的运动时间为8秒;由此可得点P到A的距离需分和两种情况讨论:点Q到B的距离为:8-t;由于在第2秒时,点P与点Q重合,第4秒时,点P得到达终点,因此点P到点Q的距离需分, 及三种情况讨论.
试题解析:
(1)∵|2a+6|+|b﹣9|=0
∴2a+6=0,b﹣9=0,解得a=﹣3,b=9,
∴点A表示的数为﹣3,点B表示的数为9;
(2)AB=9﹣(﹣3)=12,
∵BC=2AC,
∴BC=8,AC=4,
∴OC=1,
∴C点表示的数为1;
(3)由题意可得:①点P到点A的距离PA=;
②点Q到点B的距离QB=8﹣t(0≤t≤8);
③当0≤t≤2时,点P与点Q之间的距离 PQ=t+4﹣3t=4﹣2t,
当2<t≤4时,点P与点Q之间的距离 PQ=3t﹣t﹣4=2t﹣4,
当4<t≤8时,点P与点Q之间的距离 PQ=8﹣t.
即PQ=.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.
(1)求抛物线的函数解析式;
(2)求△ABC的面积;
(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式分解正确的是( )
A.12xyz﹣9x2y2=3xyz(4﹣3xy)
B.3a2y﹣3ay+3y=3y(a2﹣a+1)
C.﹣x2+xy﹣xz=﹣x(x+y﹣z)
D.a2b+5ab﹣b=b(a2+5a)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线 y=-3x+4 过点 A(-1,y1)和点(-3,y2),则 y1 和 y2 的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是 ;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=(x﹣1)2﹣2
D.y=(x+1)2﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字的组合和奖品名称相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率.
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或画树状图的方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com