【题目】如图,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.
(1)求抛物线的函数解析式;
(2)求△ABC的面积;
(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.
【答案】(1)y=x2+x﹣3;(2)12;(3)当x=﹣3时,S△APC有最大值,此时点P的坐标是P(﹣3,﹣).
【解析】试题分析:(1)根据顶点坐标公式即可求得a、b、c的值,即可解题;(2)易求得点B、C的坐标,即可求得OC的长,即可求得△ABC的面积,即可解题;(3)作PE⊥x轴于点E,交AC于点F,可将△APC的面积转化为△AFP和△CFP的面积之和,而这两个三角形有共同的底PF,这一个底上的高的和又恰好是A、C两点间的距离,因此若设设E(x,0),则可用x来表示△APC的面积,得到关于x的一个二次函数,求得该二次函数最大值,即可解题.
试题解析:(1)设此函数的解析式为y=a(x+h)2+k,
∵函数图象顶点为M(﹣2,﹣4),
∴y=a(x+2)2﹣4,
又∵函数图象经过点A(﹣6,0),
∴0=a(﹣6+2)2﹣4解得a=,
∴此函数的解析式为y=(x+2)2﹣4,
即y=x2+x﹣3;
(2)∵点C是函数y=x2+x﹣3的图象与y轴的交点,
∴点C的坐标是(0,﹣3),
又当y=0时,有y=x2+x﹣3=0,
解得x1=﹣6,x2=2,
∴点B的坐标是(2,0),
则S△ABC=|AB||OC|=×8×3=12;
(3)假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.
设E(x,0),则P(x, x2+x﹣3),
设直线AC的解析式为y=kx+b,
∵直线AC过点A(﹣6,0),C(0,﹣3),
∴,解得,
∴直线AC的解析式为y=﹣x﹣3,
∴点F的坐标为F(x,﹣ x﹣3),
则|PF|=﹣x﹣3﹣(x2+x﹣3)=﹣x2﹣x,
∴S△APC=S△APF+S△CPF=|PF||AE|+|PF||OE|
=|PF||OA|=(﹣x2﹣x)×6=﹣x2﹣x=﹣(x+3)2+,
∴当x=﹣3时,S△APC有最大值,此时点P的坐标是P(﹣3,﹣).
科目:初中数学 来源: 题型:
【题目】(2017·河北迁安一模)如图,在Rt△ABC中,直角边AC=7 cm,BC=3 cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2 cm/s的速度移动,过点E作BC的垂线交直线CD于点F.
(1)试说明:∠A=∠BCD;
(2)点E运动多长时间,CF=AB?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“元旦”期间,小明,小亮等同学随家长一同到我市某景区游玩,下面是买门票时,小明与他爸爸看了票价后的对话:
票价:成人:每张35元; 学生:按成人票价的5折优惠; 团体票(16人以上含16人):按成人票价的a折优惠.
爸爸:大人门票是每张35元,学生门票是5折优惠,我们一共12人,共需350元.
小明:爸爸,等一下,让我算一算,如果按团体票方式买票,还可节省14元.
试根据以上信息,解答以下问题:
(1)小明他们一共去了几个成人?几个学生?
(2)求票价中a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从M、N两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图是甲乙两车之间的距离s(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达N地,停止行驶.
(1)甲车的速度是千米/小时;乙车速度是千米/小时;a= .
(2)甲车出发多长时间后两车相距330千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形一边长为12cm,那么它的两条对角线的长度可以是( )
A.8cm和14cm
B.10cm 和14cm
C.18cm和20cm
D.10cm和34cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0
(1)点A表示的数为 ,点B表示的数为 ;
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为 ;
(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.
请用含t的代数式表示:点P到点A的距离PA= ,点Q到点B的距离QB= ;点P与点Q之间的距离 PQ= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com