精英家教网 > 初中数学 > 题目详情

【题目】超速行驶是一种十分危险的违法驾驶行为,在一条东西走向的笔直高速公路MN上,小型车限速为每小时100千米. 现有一辆小汽车行驶到A处时,发现北偏东30°方向200米处有一超速监测仪P. 10秒后,小汽车行驶至B处,测得监测仪PB处的北偏西45°方向上. 请问:这辆车超速了吗?通过计算说明理由.(参考数据:

【答案】这辆车没有超速

【解析】分析:过点PPCABC,根据Rt△APC的性质求出AC和PC的长度,根据等腰三角形的性质得出BC的长度,从而得出AB的长度,最后根据速度的计算公式求出速度,从而得出答案.

详解:过点PPCABC

由题可知:

∴在中,

中,

所以这辆车没有超速.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABO中,∠B=90°,∠OAB=30°,OA=3.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P40)为圆心,PA长为半径画圆,⊙Px轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:

(发现)(1的长度为多少;

2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积.

(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.

(拓展)当RtABO的边有两个交点时,请你直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了实现省城合肥跨越发展,近两年我市开始全面实施畅通一环工程,如图为一环路的一座下穿路拱桥,它轮廓是抛物线,桥的跨度AB=16米,拱高为6.

1)请以A点为坐标原点,AB所在直线为x轴建立平面直角坐标系,将抛物线放在直角坐标系中,求出抛物线的解析式;

2)若桥拱下是双向行车道,其中一条行车道能否并排行驶宽3米,高2米的两辆汽车(汽车间隔不小于1米)说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知二次函数yax2+bx+c(a≠0)的图象与x轴交于A(10)B(30)两点,与y轴交于点C(0,﹣2),顶点为D,对称轴交x轴于点E

(1)求该二次函数的解析式;

(2)M为该抛物线对称轴左侧上的一点,过点M作直线MNx轴,交该抛物线于另一点N.是否存在点M,使四边形DMEN是菱形?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)连接CE(如图2),设点P是位于对称轴右侧该抛物线上一点,过点PPQx轴,垂足为Q.连接PE,请求出当△PQE与△COE相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.

(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?

(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cmBC=80cmA=120°B=60°C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABCAB=16,以AB为直径的半圆与BC边交于点D,过点DDF⊥AC,垂足为F,过点FFG⊥AB,垂足为G,连结GD

1)求证:DF⊙O的切线;

2)求FG的长;

3)求tan∠FGD的值.

查看答案和解析>>

同步练习册答案