精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知二次函数yax2+bx+c(a≠0)的图象与x轴交于A(10)B(30)两点,与y轴交于点C(0,﹣2),顶点为D,对称轴交x轴于点E

(1)求该二次函数的解析式;

(2)M为该抛物线对称轴左侧上的一点,过点M作直线MNx轴,交该抛物线于另一点N.是否存在点M,使四边形DMEN是菱形?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)连接CE(如图2),设点P是位于对称轴右侧该抛物线上一点,过点PPQx轴,垂足为Q.连接PE,请求出当△PQE与△COE相似时点P的坐标.

【答案】(1)y=x2x2(2)M坐标为(1,﹣)(3)P的坐标为(58)(2,﹣2)()()

【解析】

1)由AB两点的坐标,利用待定系数法可求得二次函数的表达式;
2)先求出顶点D(1,﹣),则DE,根据四边形DMEN是菱形,点M的纵坐标为﹣,令x2x2=﹣,解方程,即可求出点M坐标.

3)分COE∽△PQECOE∽△EQP两种情况进行讨论.

解:(1)设抛物线解析式为ya(x+1)(x3)

将点C(0,﹣2)代入,得:﹣3a=﹣2

解得a

则抛物线解析式为

(2)yx2x2(x1)2

∴顶点D(1,﹣),即DE

∵四边形DMEN是菱形,

∴点M的纵坐标为﹣

x2x2=﹣

解得x

M为该抛物线对称轴左侧上的一点,

x1

x1

∴点M坐标为(1,﹣)

(3)C(0,﹣2)E(10)

OC2OE1

如图,设P(m m2m2)(m1)

PQ|m2m2|EQm1

①若COE∽△PQE,则

解得m0()m5m2m=﹣3()

此时点P坐标为(58)(2,﹣2)

②若COE∽△EQP,则

解得m(负值舍去)m

此时点P的坐标为()()

综上,点P的坐标为(58)(2,﹣2)()()

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数

80

85

90

95

人数

4

2

10

4

根据图表中的信息,解答下列问题:

这次获得刘徽奖的人数是多少,并将条形统计图补充完整;

获得祖冲之奖的学生成绩的中位数是多少分,众数是多少分;

在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C为直径BA的延长线上一点,CD切⊙O于点D

(Ⅰ)如图①,若∠CDA=26°,求∠DAB的度数;

(Ⅱ)如图②,过点B作⊙O的切线交CD的延长线于点E,若⊙O的半径为3BC=10,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是对角线BD上的一点,过点CCFDB,且CF=DE,连接AEBFEF

1)求证:△ADE≌△BCF

2)若∠ABE+BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是一种十分危险的违法驾驶行为,在一条东西走向的笔直高速公路MN上,小型车限速为每小时100千米. 现有一辆小汽车行驶到A处时,发现北偏东30°方向200米处有一超速监测仪P. 10秒后,小汽车行驶至B处,测得监测仪PB处的北偏西45°方向上. 请问:这辆车超速了吗?通过计算说明理由.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCDAC两点测得该塔顶端F的仰角分别为∠α=48°和∠β=65°,矩形建筑物宽度AD=20m,高度CD=30m,则信号发射塔顶端到地面的高度FG__米(结果精确到1m).

参考数据:sin48°=0.7cos48°=0.7tan48°=1.1cos65°=0.4tan65°=2.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求证:无论m为何值时,这个方程总有两个实数根;

(2)若方程的两个实数根都是整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种新商品每件进价是120在试销期间发现当每件商品售价为130元时每天可销售70当每件商品售价高于130元时每涨价1日销售量就减少1.据此规律请回答:

(1)当每件商品售价定为170元时每天可销售多少件商品?商场获得的日盈利是多少?

(2)在上述条件不变商品销售正常的情况下每件商品的销售价定为多少元时商场日盈利可达到1600?

查看答案和解析>>

同步练习册答案