【题目】如图,与关于直线对称,,延长交于点,当______时,是等腰三角形.
【答案】36°.
【解析】
由对称的性质得∠A=∠C,∠APT=∠CPT,根据AT=PT可得∠PAT=∠APT,进而可得∠APF=2∠A,当FT=FC时,∠PFT=2∠C=2∠A,再由三角形内角和定理可得∠A的度数.
∵△APT与△CPT关于直线PT对称,
∴∠A=∠C,∠APT=∠CPT,
∵AT=PT,
∴∠PAT=∠APT,
∴∠APF=2∠APT =2∠A,
若△TFC是等腰三角形,则有FT=FC,
∴∠FTC=∠C,
∴∠PFA=∠FTC+∠C=2∠C,
∴∠PFT=2∠A,
∵∠A+∠APF+∠PFA=180°,即∠A+2∠A+2∠A=180°,
∴∠A=36°.
∴当∠A=36°时,△TFC是等腰三角形.
故答案为:36°.
科目:初中数学 来源: 题型:
【题目】在直线上摆放着三个正方形
(1)如图1,已知水平放置的两个正方形的边长依次是,斜着放置的正方形的面积_ ;两个直角三角形的面积之和为____ (均用表示)
(2)如图2,小正方形面积, 斜着放置的正方形的面积,求图中两个钝角三角形的面积_ ;_
(3)图3是由五个正方形所搭成的平面图,与分别表示所在地三角形与正方形的面积,试写出_ ;_ .(均用表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式.
(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,
问:球出手时,他距离地面的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列方程的特征及其解的特点.
①x+=-3的解为x1=-1,x2=-2;
②x+=-5的解为x1=-2,x2=-3;
③x+=-7的解为x1=-3,x2=-4.
解答下列问题:
(1)请你写出一个符合上述特征的方程为________,其解为________;
(2)根据这类方程的特征,写出第n个方程为________,其解为________;
(3)请利用(2)的结论,求关于x的方程x+=-2(n+2)(其中n为正整数)的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4.若用想x,y表示直角三角形的两直角边(x>y),则下列四个说法:①,②x-y=2,③2xy+4=49,④x+y=9其中说法正确的是( )
A. ①②B. ①②③④C. ②④D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com