精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,A=70°B=50°,点DE分别为ABAC上的点,沿DE折叠,使点A落在BC边上点F处,若EFC为直角三角形,则BDF的度数为______

【答案】110°50°.

【解析】

由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=A=70°,再分∠EFC=90°和∠FEC=90°两种情况先求出∠DFC度数继而由∠BDF=DFCB可得答案

∵△ABCA=70°、B=50°,∴∠C=180°﹣AB=60°,由翻折性质知∠DFE=A=70°,分两种情况讨论

当∠EFC=90°DFC=DFE+∠EFC=160°,则∠BDF=DFCB=110°;

②当∠FEC=90°EFC=180°﹣FECC=30°,∴∠DFC=DFE+∠EFC=100°,BDF=DFCB=50°;

综上BDF的度数为110°50°.

故答案为:110°50°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,学校大门出口处有一自动感应栏杆,点A是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知ABBC , 支架AB高1.2米,大门BC打开的宽度为2米,以下哪辆车可以通过?(  ) (栏杆宽度,汽车反光镜忽略不计)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75车辆尺寸:长×宽×高)

A.宝马Z4(4200mm×1800mm×1360mm
B.奇瑞QQ(4000mm×1600mm×1520mm
C.大众朗逸(4600mm×1700mm×1400mm
D.奥迪A4(4700mm×1800mm×1400mm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD平分∠BACDEACABE , 则SEBDSABC=(  )
A.1:2
B.1:4
C.1:3
D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,若∠B=2∠CADBCEBC边中点,求证:AB=2DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),DBC的中点,动点PO点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t(0<t<13).

(1)①点D的坐标是(___,___);

②当点PAB上运动时,P的坐标是(___,___)(t表示);

(2)写出△POD的面积St之间的函数关系式,并求出△POD的面积等于9时点P的坐标;

(3)当点POA上运动时,连接BP,将线段BP绕点P逆时针旋转,B恰好落到OC的中点M,则此时点P运动的时间t=___.(直接写出参考答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题,真命题是(
A.如图,如果OP平分∠AOB,那么,PA=PB
B.三角形的一个外角大于它的一个内角
C.如果两条直线没有公共点,那么这两条直线互相平行
D.有一组邻边相等的矩形是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知△ABC是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN=FM,连接DM、MN、DN.

(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断△DMN是怎样的特殊三角形(不要求证明);

(2)请借助图解答:当点M在线段BF(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;

(3)请借助图解答:当点M在射线FC(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?画出图形,不要求证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论: ①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中结论正确的是 . (填正确结论的序号)

查看答案和解析>>

同步练习册答案