【题目】如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.
(1)求证:点D为的中点;
(2)若CB=6,AB=10,求DF的长;
(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.
【答案】(1)见解析;(2)DF=2;(3)5
【解析】
(1)利用圆周角定理得到∠ACB=90°,再证明OF⊥AC,然后根据垂径定理得到点D为的中点;
(2)证明OF为△ACB的中位线得到OF=BC=3,然后计算OD﹣OF即可;
(3)作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,利用两点之间线段最短得到此时PC+PD的值最小,再计算出∠DOC′=120°,作OH⊥DC′于H,如图,然后根据等腰三角形的性质和含30度的直角三角形三边的关系求出DH,从而得到PC+PD的最小值.
(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵OD∥BC,
∴∠OFA=90°,
∴OF⊥AC,
∴=,
即点D为的中点;
(2)解:∵OF⊥AC,
∴AF=CF,
而OA=OB,
∴OF为△ACB的中位线,
∴OF=BC=3,
∴DF=OD﹣OF=5﹣3=2;
(3)解:作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,
∵PC=PC′,
∴PD+PC=PD+PC′=DC′,
∴此时PC+PD的值最小,
∵=,
∴∠COD=∠AOD=80°,
∴∠BOC=20°,
∵点C和点C′关于AB对称,
∴∠C′OB=20°,
∴∠DOC′=120°,
作OH⊥DC′于H,如图,
则∠ODH=30°,
则C′H=DH,
在Rt△OHD中,OH=OD=,
∴DH=OH=,
∴DC′=2DH=5,
∴PC+PD的最小值为5.
科目:初中数学 来源: 题型:
【题目】如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF.其中正确的是( )
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的三个顶点、、.抛物线的解析式为.
(1)如图一,若抛物线经过,两点,直接写出点的坐标 ;抛物线的对称轴为直线 ;
(2)如图二:若抛物线经过、两点,
①求抛物线的表达式.
②若点为线段上一动点,过点作交于点,过点作于点交抛物线于点.当线段最长时,求点的坐标;
(3)若,且抛物线与矩形没有公共点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半径为R的⊙O的弦AC=BD,AC、BD交于E,F为上一点,连AF、BF、AB、AD,下列结论:①AE=BE;②若AC⊥BD,则AD=R;③在②的条件下,若,AB=,则BF+CE=1.其中正确的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.
(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;
(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;
(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MNMD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.
(1)如图①,当时,求点的坐标;
(2)如图②,当点落在的延长线上时,求点的坐标;
(3)当点落在线段上时,求点的坐标(直接写出结果即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com