精英家教网 > 初中数学 > 题目详情

下列图形中,既是轴对称图形又是中心对称图形的是( ).

C.

【解析】

试题分析:本题考查了轴对称图形和中心对称图形的定义,A和D是轴对称图形,但不是中心对称图形,B是中心对称图形,但不是轴对称图形,只有C既是轴对称图形,又是中心对称图形.

故选:C.

考点:轴对称图形的定义;中心对称图形的定义.

考点分析: 考点1:图形的平移与旋转 定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。 平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等) 平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。 平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年安徽省八年级下学期开学考试数学试卷(解析版) 题型:解答题

如图,已知BD为△ABC的中线,CE⊥BD于E,AF⊥BD于F.求证:BE+BF2BD

查看答案和解析>>

科目:初中数学 来源:2014-2015学年陕西省西安市九年级下学期第一次月考数学试卷(解析版) 题型:选择题

若关于的一元二次方程的两个根为,则这个方程是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省东台市第一教研片九年级下学期第一次月考数学试卷(解析版) 题型:填空题

如图,有一圆弧形门拱的拱高AB为1m,跨度CD为4m,则这个圆弧形门拱的半径为 m.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省东台市第一教研片九年级下学期第一次月考数学试卷(解析版) 题型:选择题

“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年湖北省九年级3月联考数学试卷(解析版) 题型:解答题

(本题满分10分)某校学生参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如表所示:

销售单价x(单位:元/个)

10

12

14

16

销售量y(单位:个)

300

240

180

120

(1)试判断y与x之间的函数关系,并求出函数关系式;

(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;

(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年湖北省九年级3月联考数学试卷(解析版) 题型:填空题

如图,点A、B在反比例函数的图像上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为 .

查看答案和解析>>

科目:初中数学 来源:2014-2015学年湖北省九年级3月联考数学试卷(解析版) 题型:解答题

(本题10分)我区某电子器件厂商投产一种新型电子产品,每件制造成本为18元,在试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价﹣制造成本)

(1)写出每月的总利润(万元)与销售单价(元)之间的函数关系式;(3分)

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(4分)

(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?(3分)

查看答案和解析>>

科目:初中数学 来源:2014-2015学年陕西省西安市七年级下学期第一次月考数学试卷(解析版) 题型:选择题

下列计算结果正确的是 ( )

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案