精英家教网 > 初中数学 > 题目详情

【题目】如图,AD是△ABC的边BC上的中线,由下列条件中的某一个就能推出△ABC是等腰三角形的是______(把所有的正确答案的序号都填在横线上)①∠BAD=ACD;②∠BAD+B=CAD+C;AB+BD=AC+CD;AB-BD=AC-CD

【答案】②③④

【解析】

可根据等腰三角形三线合一的性质来判断①②是否正确; ③④要通过作等腰三角形来判断其结论是否成立

: ②当∠BAD=CAD,AD是∠BAC的平分线, ADBC边上的

;则ΔABD≌ΔACD,ΔBAC是等腰三角形;

③延长DBE,使BE=AB;延长DCF,

使CF=AC; 连接AE, AF;

AB+BD=CD+AC,

DE=DF,ADBC;

ΔAEF是等腰三角形;E=F;

AB=BE, ∠ABC=2∠E,同理可得,∠ACB=2∠F,

∠ABC=∠ACB,即:AB=AC,

ΔABC是等腰三角形;

④在ΔABC, ADBC, 根据勾股定理, :

AB-BD=AC-CD.

(AB+BD)(AB-BD)=(AC+CD)(AC-CD)

AB-BD=AC-CD,

AB+BD=AC+CD;

+②得:2AB=2AC;

AB=AC,

ΔABC是等腰三角形

故答案为:②③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.

(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?

(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△OAB中,OA=OB,C为AB中点,以O圆心,OC长为半径作圆,AO与⊙O交于点E,直线OB与⊙O交于点F和D,连接EF、CF,CF与OA交于点G.

(1)求证:直线AB是⊙O的切线;
(2)求证:OD·EG=OG·EF;
(3)若AB=8,BD=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点A06)的直线AB与直线OC相交于点C24)动点P沿路线OCB运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.

1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;

2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;

3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强市民的节能意识,我市试行阶梯电价.2013年开始,按照每户每年的分三个档次计费,具体规定见下图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.

1)若小明家计划2013年全年的用电量不超过2520度,则612月份小明家平均每月用电量最多为多少度?(保留整数)

2)若小明家20136月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,点A( ,0),B(3 ,0),以AB为直径的⊙G交y轴于C,D两点.

(1)填空:请直接写出⊙G的半径r,圆心G的坐标:r=;G().
(2)如图2,直线y= 与x、y轴分别交于F、E两点,且经过圆上一点T( ,m),求证:直线EF是⊙G的切线;
(3)在(2)的条件下,如图3,点M是⊙G优弧 上的一个动点(不包括A、T两点),连接AT、CM、TM,CM交AT于点N,试问,是否存在一个常数k,始终满足CN·CM=k?如果存在,请求出k的值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,已知 两点的坐标分别为 是线段 上一点(与 点不重合),抛物线 )经过点 ,顶点为 ,抛物线 )经过点 ,顶点为 的延长线相交于点

(1)若 ,求抛物线 的解析式;
(2)若 ,求 的值;
(3)是否存在这样的实数 ),无论 取何值,直线 都不可能互相垂直?若存在,请直接写出 的两个不同的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案