精英家教网 > 初中数学 > 题目详情
如图,已知∠ABC=∠DBC,要使△ABC≌△DBC,请添加一个条件
AB=DB或∠A=∠D或∠ACB=∠DCB
AB=DB或∠A=∠D或∠ACB=∠DCB
.(只需写出一个条件)
分析:已知∠ABC=∠DBC,BC=BC,要使△ABC≌△DBC,还缺一角或一边,结合图形可得答案.
解答:解:已知∠ABC=∠DBC,BC=BC,
当AB=DB时,
AB=DB
∠ABC=∠DCB
BC=BC

∴△ABC≌△BDC(SAS);
当∠A=∠D时,
∠A=∠D
∠ABC=∠DCB
BC=BC

∴△ABC≌△BDC(AAS);
当∠ACB=∠DCB时,
∠ACB=∠DCB
BC=BC
∠ABC=∠DBC

∴△ABC≌△BDC(ASA).
故答案为:AB=DB或∠A=∠D或∠ACB=∠DCB.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案