精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,BD平分∠ABC,

(1)作图:作BC边的垂直平分线分别交BC,BD于点E,F(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连接CF,若∠A=60°,∠ABD=24°,求∠ACF的度数.

【答案】
(1)解:如图:


(2)解:∵ BD平分∠ABC,∠ABD=24°,

∴ ∠FBC=24°

∵ EF垂直平分BC,

∴ BF=CF

∴ ∠FCB=∠FBC=24°

在△FDC中,∠FDC=∠A+∠ABD=60°+24°=84°

∠DFC=∠FCB+∠FBC=24°+24°=48°

∴ ∠ACF=180°-84°-48°=48°


【解析】(1)分别以点B,C为圆心,大于BC的长度为半径,画弧,两弧在BC的两侧都相交,,过两弧的交点画直线,交BD于点F,交BC于点E ,则EF就是所求BC边的垂直平分线的;
(2)根据角平分线的定义得出 ∠FBC=24°,根据垂直平分线的性质的出BF=CF,根据等边对等角得出 ∠FCB=∠FBC=24°,根据三角形的外角的性质得出∠FDC=∠A+∠ABD=60°+24°=84°,FC=∠FCB+∠FBC=24°+24°=48°,根据三角形的内角和得出 ∠ACF的度数。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列四个命题中,正确的是( ).

A.平分弦的直径垂直于弦;B.经过同一平面内的三个点一定可以作一个圆;

C.长度相等的两条弧是等弧;D.三角形的外心到这个三角形各顶点的距离相等;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 交通工程学理论把在单向道路上行驶汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆/小时)指单位时间内通过道路指定断面的车辆数;速度(千米/小时)指通过道路指定断面的车辆速度,密度(辆/千米)指通过道路指定断面单位长度内的车辆数.

配合大数据治堵行动,测得某路段流量速度之间关系的部分数据如下表:

速度(千米/小时)

5

10

20

32

40

48

(辆/小时)

550

1000

1600

1792

1600

1152

(1)根据上表信息,下列三个函数关系式中,刻画关系最准确的是____.(只填上正确答案的序号)

;②.

(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流是多少?

(3)已知满足.请结合(1)中选取的函数关系式继续解决下列问题.

①市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵;

②在理想状态下,假设前后两车车头之间的距离(米)均相等,求流量最大时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.
(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在

(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;

(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(-23·(-22=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=x+3y轴交于点A,又与正比例函数y=kx的图象交于点B(-1,m)

①求点A的坐标;

②确定m的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).

(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.

查看答案和解析>>

同步练习册答案